1
|
Shankar-Hari M, Phillips GS, Levy ML,
Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD and
Singer M: Sepsis Definitions Task Force. Developing a new
definition and assessing new clinical criteria for septic shock:
For the third international consensus definitions for sepsis and
septic shock (Sepsis-3). JAMA. 315:775–787. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Fleischmann C, Scherag A, Adhikari NK,
Hartog CS, Tsaganos T, Schlattmann P, Angus DC and Reinhart K:
International Forum of Acute Care Trialists. Assessment of global
incidence and mortality of hospital-treated sepsis. Current
estimates and limitations. Am J Respir Crit Care Med. 193:259–272.
2016.PubMed/NCBI View Article : Google Scholar
|
3
|
Gotts JE and Matthay MA: Sepsis:
Pathophysiology and clinical management. BMJ.
353(i1585)2016.PubMed/NCBI View Article : Google Scholar
|
4
|
van der Poll T, van de Veerdonk FL,
Scicluna BP and Netea MG: The immunopathology of sepsis and
potential therapeutic targets. Nat Rev Immunol. 17:407–420.
2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Huang M, Cai S and Su J: The pathogenesis
of sepsis and potential therapeutic targets. Int J Mol Sci.
20(5376)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Rizzo AN and Dudek SM: Endothelial
glycocalyx repair: Building a wall to protect the lung during
sepsis. Am J Respir Cell Mol Biol. 56:687–688. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Rimmele T, Payen D, Cantaluppi V, Marshall
J, Gomez H, Gomez A, Murray P and Kellum JA: ADQI XIV Workgroup.
Immune cell phenotype and function in sepsis. Shock. 45:282–291.
2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Delano MJ and Ward PA: The immune system's
role in sepsis progression, resolution, and long-term outcome.
Immunol Rev. 274:330–353. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Hotchkiss RS, Monneret G and Payen D:
Sepsis-induced immunosuppression: From cellular dysfunctions to
immunotherapy. Nat Rev Immunol. 13:862–874. 2013.PubMed/NCBI View
Article : Google Scholar
|
10
|
Hart M, Walch-Ruckheim B, Krammes L, Kehl
T, Rheinheimer S, Tänzer T, Glombitza B, Sester M, Lenhof HP,
Keller A and Meese E: MiR-34a as hub of T cell regulation networks.
J Immunother Cancer. 7(187)2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Deng JN, Li YQ, Liu Y, Li Q, Hu Y, Xu JQ,
Sun TY and Xie LX: Exosomes derived from plasma of septic patients
inhibit apoptosis of T lymphocytes by down-regulating bad via
hsa-miR-7-5p. Biochem Biophys Res Commun. 513:958–966.
2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Pandey RK, Sundar S and Prajapati VK:
Differential expression of miRNA regulates t cell differentiation
and plasticity during visceral leishmaniasis infection. Front
Microbiol. 7(206)2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Chu F, Hu Y, Zhou Y, Guo M, Lu J, Zheng W,
Xu H, Zhao J and Xu L: MicroRNA-126 deficiency enhanced the
activation and function of CD4+ T cells by elevating
IRS-1 pathway. Clin Exp Immunol. 191:166–179. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Ding S, Zheng Y, Xu Y, Zhao X and Zhong C:
MiR-21/PTEN signaling modulates the chemo-sensitivity to
5-fluorouracil in human lung adenocarcinoma A549 cells. Int J Clin
Exp Pathol. 12:2339–2352. 2019.PubMed/NCBI
|
15
|
Ruan Q, Wang P, Wang T, Qi J, Wei M, Wang
S, Fan T, Johnson D, Wan X, Shi W, et al: MicroRNA-21 regulates
T-cell apoptosis by directly targeting the tumor suppressor gene
Tipe2. Cell Death Dis. 5(e1095)2014.PubMed/NCBI View Article : Google Scholar
|
16
|
Ando Y, Yang GX, Kenny TP, Kawata K, Zhang
W, Huang W, Leung PS, Lian ZX, Okazaki K, Ansari AA, et al:
Overexpression of microRNA-21 is associated with elevated
pro-inflammatory cytokines in dominant-negative TGF-β receptor type
II mouse. J Autoimmun. 41:111–119. 2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Zheng Z, Xu PP, Wang L, Zhao HJ, Weng XQ,
Zhong HJ, Qu B, Xiong J, Zhao Y, Wang XF, et al: MiR21 sensitized
B-lymphoma cells to ABT-199 via ICOS/ICOSL-mediated interaction of
Treg cells with endothelial cells. J Exp Clin Cancer Res.
36(82)2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Teteloshvili N, Smigielska-Czepiel K,
Kroesen BJ, Brouwer E, Kluiver J, Boots AM and van den Berg A:
T-cell activation induces dynamic changes in miRNA expression
patterns in CD4 and CD8 T-cell subsets. Microrna. 4:117–122.
2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Balk RA: Systemic inflammatory response
syndrome (SIRS): Where did it come from and is it still relevant
today? Virulence. 5:20–26. 2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Song GY, Chung CS, Chaudry IH and Ayala A:
Immune suppression in polymicrobial sepsis: Differential regulation
of Th1 and Th2 responses by p38 MAPK. J Surg Res. 91:141–146.
2000.PubMed/NCBI View Article : Google Scholar
|
22
|
Cheng Z, Abrams ST, Toh J, Wang SS, Wang
Z, Yu Q, Yu W, Toh CH and Wang G: The critical roles and mechanisms
of immune cell death in sepsis. Front Immunol.
11(1918)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Pool R, Gomez H and Kellum JA: Mechanisms
of organ dysfunction in sepsis. Crit Care Clin. 34:63–80.
2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Chen J, Xuan J, Gu YT, Shi KS, Xie JJ,
Chen JX, Zheng ZM, Chen Y, Chen XB, Wu YS, et al: Celastrol reduces
IL-1β induced matrix catabolism, oxidative stress and inflammation
in human nucleus pulposus cells and attenuates rat intervertebral
disc degeneration in vivo. Biomed Pharmacother. 91:208–219.
2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Xie Z, Zhang H, Wang J, Li Z, Qiu C and
Sun K: LIN28B-AS1-IGF2BP1 association is required for LPS-induced
NFκB activation and pro-inflammatory responses in human macrophages
and monocytes. Biochem Biophys Res Commun. 519:525–532.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Sun J, Shi S, Wang Q, Yu K and Wang R:
Continuous hemodiafiltration therapy reduces damage of multi-organs
by ameliorating of HMGB1/TLR4/NFκB in a dog sepsis model. Int J
Clin Exp Pathol. 8:1555–1564. 2015.PubMed/NCBI
|
27
|
Hamers L, Kox M and Pickkers P:
Sepsis-induced immunoparalysis: Mechanisms, markers, and treatment
options. Minerva Anestesiol. 81:426–439. 2015.PubMed/NCBI
|
28
|
Ono S, Tsujimoto H, Hiraki S and Aosasa S:
Mechanisms of sepsis-induced immunosuppression and immunological
modification therapies for sepsis. Ann Gastroenterol Surg.
2:351–358. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Luan YY, Yao YM, Xiao XZ and Sheng ZY:
Insights into the apoptotic death of immune cells in sepsis. J
Interferon Cytokine Res. 35:17–22. 2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Kim JS, Kim SJ and Lee SM: Genipin
attenuates sepsis-induced immunosuppression through inhibition of T
lymphocyte apoptosis. Int Immunopharmacol. 27:15–23.
2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Atmatzidis S, Koutelidakis IM,
Chatzimavroudis G, Kotsaki A, Louis K, Pistiki A, Savva A,
Antonopoulou A, Atmatzidis K and Giamarellos-Bourboulis EJ:
Detrimental effect of apoptosis of lymphocytes at an early time
point of experimental abdominal sepsis. BMC Infect Dis.
11(321)2011.PubMed/NCBI View Article : Google Scholar
|
32
|
Yin F, Zhang F, Liu S and Ning B: The
therapeutic effect of high-volume hemofiltration on sepsis: A
systematic review and meta-analysis. Ann Transl Med.
8(488)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Luan YY, Yin CF, Qin QH, Dong N, Zhu XM,
Sheng ZY, Zhang QH and Yao YM: Effect of regulatory T cells on
promoting apoptosis of T lymphocyte and its regulatory mechanism in
sepsis. J Interferon Cytokine Res. 35:969–980. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Zheng G, Pan M, Li Z, Xiang W and Jin W:
Effects of vitamin D on apoptosis of T-lymphocyte subsets in
neonatal sepsis. Exp Ther Med. 16:629–634. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Oberholzer C, Oberholzer A, Clare-Salzler
M and Moldawer LL: Apoptosis in sepsis: A new target for
therapeutic exploration. FASEB J. 15:879–892. 2001.PubMed/NCBI View Article : Google Scholar
|
36
|
Tinsley KW, Cheng SL, Buchman TG, Chang
KC, Hui JJ, Swanson PE, Karl IE and Hotchkiss RS: Caspases -2, -3,
-6, and -9, but not caspase-1, are activated in sepsis-induced
thymocyte apoptosis. Shock. 13:1–7. 2000.
|
37
|
Weber P, Wang P, Maddens S, Wang PSh, Wu
R, Miksa M, Dong W, Mortimore M, Golec JM and Charlton P: VX-166: A
novel potent small molecule caspase inhibitor as a potential
therapy for sepsis. Crit Care. 13(R146)2009.PubMed/NCBI View
Article : Google Scholar
|
38
|
Gagnon JD, Kageyama R, Shehata HM, Fassett
MS, Mar DJ, Wigton EJ, Johansson K, Litterman AJ, Odorizzi P,
Simeonov D, et al: MiR-15/16 restrain memory T cell
differentiation, cell cycle, and survival. Cell Rep.
28:2169–2181.e4. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Li B, Wang X, Choi IY, Wang YC, Liu S,
Pham AT, Moon H, Smith DJ, Rao DS, Boldin MP and Yang L: MiR-146a
modulates autoreactive Th17 cell differentiation and regulates
organ-specific autoimmunity. J Clin Invest. 127:3702–3716.
2017.PubMed/NCBI View
Article : Google Scholar
|
40
|
Agudo J, Ruzo A, Tung N, Salmon H, Leboeuf
M, Hashimoto D, Becker C, Garrett-Sinha LA, Baccarini A, Merad M
and Brown BD: The miR-126-VEGFR2 axis controls the innate response
to pathogen-associated nucleic acids. Nat Immunol. 15:54–62.
2014.PubMed/NCBI View
Article : Google Scholar
|
41
|
Qin A, Wen Z, Zhou Y, Li Y, Li Y, Luo J,
Ren T and Xu L: MicroRNA-126 regulates the induction and function
of CD4(+) Foxp3(+) regulatory T cells through PI3K/AKT pathway. J
Cell Mol Med. 17:252–264. 2013.PubMed/NCBI View Article : Google Scholar
|
42
|
Han L, Liu H, Wu J and Liu J: MiR-126
suppresses invasion and migration of malignant glioma by targeting
mature T cell proliferation 1 (MTCP1). Med Sci Monit. 24:6630–6637.
2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Zhao S, Wang Y, Liang Y, Zhao M, Long H,
Ding S, Yin H and Lu Q: MicroRNA-126 regulates DNA methylation in
CD4+ T cells and contributes to systemic lupus
erythematosus by targeting DNA methyltransferase 1. Arthritis
Rheum. 63:1376–1386. 2011.PubMed/NCBI View Article : Google Scholar
|
44
|
Yang G, Wu D, Zeng G, Jiang O, Yuan P,
Huang S, Zhu J, Tian J, Weng Y and Rao Z: Correlation between
miR-126 expression and DNA hypomethylation of CD4+ T
cells in rheumatoid arthritis patients. Int J Clin Exp Pathol.
8:8929–8936. 2015.PubMed/NCBIeCollection, 2015.
|
45
|
Tian M, Ji Y, Wang T, Zhang W, Zhou Y and
Cui Y: Changes in circulating microRNA-126 levels are associated
with immune imbalance in children with acute asthma. Int J
Immunopathol Pharmacol. 32(2058738418779243)2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Hotchkiss RS, Tinsley KW, Swanson PE,
Schmieg RE Jr, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP,
Buchman TG and Karl IE: Sepsis-induced apoptosis causes progressive
profound depletion of B and CD4+ T lymphocytes in
humans. J Immunol. 166:6952–6963. 2001.PubMed/NCBI View Article : Google Scholar
|
47
|
Jones Buie JN, Zhou Y, Goodwin AJ, Cook
JA, Vournakis J, Demcheva M, Broome AM, Dixit S, Halushka PV and
Fan H: Application of deacetylated poly-N-acetyl glucosamine
nanoparticles for the delivery of miR-126 for the treatment of
cecal ligation and puncture-induced sepsis. Inflammation.
42:170–184. 2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Su J and Ding L: Upregulation of miR-126
inhibits podocyte injury in sepsis via EGFL6/DKC1 signaling
pathway. Mol Med Rep. 23(373)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Smigielska-Czepiel K, van den Berg A,
Jellema P, Slezak-Prochazka I, Maat H, van den Bos H, van der Lei
RJ, Kluiver J, Brouwer E, Boots AM and Kroesen BJ: Dual role of
miR-21 in CD4+ T-cells: Activation-induced miR-21
supports survival of memory T-cells and regulates CCR7 expression
in naive T-cells. PLoS One. 8(e76217)2013.PubMed/NCBI View Article : Google Scholar
|