1
|
Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri
S, Lau C, Zaidinski M, Paik PK, Zakowski MF, Kris MG and Ladanyi M:
Prevalence, clinicopathologic associations, and molecular spectrum
of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas.
Clin Cancer Res. 18:4910–4918. 2012.PubMed/NCBI View Article : Google Scholar
|
2
|
Pillai RN, Behera M, Berry LD, Rossi MR,
Kris MG, Johnson BE, Bunn PA, Ramalingam SS and Khuri FR: HER2
mutations in lung adenocarcinomas: A report from the lung cancer
mutation consortium. Cancer. 123:4099–4105. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Li BT, Ross DS, Aisner DL, Chaft JE, Hsu
M, Kako SL, Kris MG, Varella-Garcia M and Arcila ME: HER2
amplification and HER2 mutation are distinct molecular targets in
lung cancers. J Thorac Oncol. 11:414–419. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Stephens P, Hunter C, Bignell G, Edkins S,
Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, et al:
Lung cancer: Intragenic ERBB2 kinase mutations in tumours. Nature.
431:525–526. 2004.PubMed/NCBI View
Article : Google Scholar
|
5
|
Robichaux JP, Elamin YY, Vijayan RSK,
Nilsson MB, Hu L, He J, Zhang F, Pisegna M, Poteete A, Sun H, et
al: Pan-cancer landscape and analysis of ERBB2 mutations identifies
poziotinib as a clinically active inhibitor and enhancer of T-DM1
activity. Cancer Cell. 36:444–57.e7. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Wang Y, Jiang T, Qin Z, Jiang J, Wang Q,
Yang S, Rivard C, Gao G, Ng TL, Tu MM, et al: HER2 exon20
insertions in non-small-cell lung cancer are sensitive to the
irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib.
Ann Oncol. 30:447–455. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Peters S, Curioni-Fontecedro A, Nechushtan
H, Shih JY, Liao WY, Gautschi O, Spataro V, Unk M, Yang JCH,
Lorence RM, et al: Activity of afatinib in heavily pretreated
patients with ERBB2 mutation-positive advanced NSCLC: Findings from
a global named patient use program. J Thorac Oncol. 13:1897–1905.
2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Oh DY and Bang YJ: HER2-targeted
therapies-a role beyond breast cancer. Nat Rev Clin Oncol.
17:33–48. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Jeong Y, Hellyer JA, Stehr H, Hoang NT,
Niu X, Das M, Padda SK, Ramchandran K, Neal JW, Wakelee H and Diehn
M: Role of KEAP1/NFE2L2 mutations in the chemotherapeutic response
of patients with non-small cell lung cancer. Clin Cancer Res.
26:274–281. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Yang LZ, Lei CC, Zhao YP, Sun HW, Yu QH,
Yang EJ and Zhan X: MicroRNA-34c-3p target inhibiting NOTCH1
suppresses chemosensitivity and metastasis of non-small cell lung
cancer. J Int Med Res. 48(300060520904847)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Ma F, Li Q, Chen S, Zhu W, Fan Y, Wang J,
Luo Y, Xing P, Lan B, Li M, et al: Phase I study and biomarker
analysis of pyrotinib, novel irreversible Pan-ErbB receptor
tyrosine kinase inhibitor, in patients with human epidermal growth
factor receptor 2-positive metastatic breast cancer. J Clin Oncol.
35:3105–3112. 2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Blair HA: Pyrotinib: First global
approval. Drugs. 78:1751–1755. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Gourd E: Pyrotinib versus lapatinib in
HER2-positive breast cancer. Lancet Oncol. 20(e562)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu
Y, Li H, Yu S, Feng J, Wang S, et al: Pyrotinib or lapatinib
combined with capecitabine in HER2-positive metastatic breast
cancer with prior taxanes, anthracyclines, and/or trastuzumab: A
randomized, phase II study. J Clin Oncol. 37:2610–2619.
2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Choudhury NJ, Campanile A, Antic T, Yap
KL, Fitzpatrick CA, Wade JL III, Karrison T, Stadler WM, Nakamura Y
and O'Donnell PH: Afatinib activity in platinum-refractory
metastatic urothelial carcinoma in patients with ERBB alterations.
J Clin Oncol. 34:2165–2171. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Cancer Genome Atlas Research Network.
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Langer CJ, Stephenson P, Thor A, Vangel M
and Johnson DH: Eastern Cooperative Oncology Group Study 2598.
Trastuzumab in the treatment of advanced non-small-cell lung
cancer: is there a role? focus on eastern cooperative oncology
group study 2598. J Clin Oncol. 22:1180–1187. 2004.PubMed/NCBI View Article : Google Scholar
|
18
|
Gatzemeier U, Groth G, Butts C, Van
Zandwijk N, Shepherd F, Ardizzoni A, Barton C, Ghahramani P and
Hirsh V: Randomized phase II trial of gemcitabine-cisplatin with or
without trastuzumab in HER2-positive non-small-cell lung cancer.
Ann Oncol. 15:19–27. 2004.PubMed/NCBI View Article : Google Scholar
|
19
|
Hainsworth JD, Meric-Bernstam F, Swanton
C, Hurwitz H, Spigel DR, Sweeney C, Burris H, Bose R, Yoo B, Stein
A, et al: Targeted therapy for advanced solid tumors on the basis
of molecular profiles: Results from mypathway, an open-label, phase
IIa multiple basket study. J Clin Oncol. 36:536–542.
2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Hotta K, Aoe K, Kozuki T, Ohashi K,
Ninomiya K, Ichihara E, Kubo T, Ninomiya T, Chikamori K, Harada D,
et al: A phase II study of trastuzumab emtansine in HER2-positive
non-small cell lung cancer. J Thorac Oncol. 13:273–279.
2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Peters S, Stahel R, Bubendorf L, Bonomi P,
Villegas A, Kowalski DM, Baik CS, Isla D, De Castro Carpeno J,
Garrido P, et al: Trastuzumab emtansine (T-DM1) in patients with
previously treated HER2-overexpressing metastatic non-small cell
lung cancer: Efficacy, safety, and biomarkers. Clin Cancer Res.
25:64–72. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Kris MG, Camidge DR, Giaccone G, Hida T,
Li BT, O'Connell J, Taylor I, Zhang H, Arcila ME, Goldberg Z and
Jänne PA: Targeting HER2 aberrations as actionable drivers in lung
cancers: Phase II trial of the pan-HER tyrosine kinase inhibitor
dacomitinib in patients with HER2-mutant or amplified tumors. Ann
Oncol. 26:1421–1427. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Roskoski R Jr: Small molecule inhibitors
targeting the EGFR/ErbB family of protein-tyrosine kinases in human
cancers. Pharmacol Res. 139:395–411. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Labbé C, Cabanero M, Korpanty GJ, Tomasini
P, Doherty MK, Mascaux C, Jao K, Pitcher B, Wang R, Pintilie M, et
al: Prognostic and predictive effects of TP53 co-mutation in
patients with EGFR-mutated non-small cell lung cancer (NSCLC). Lung
Cancer. 111:23–29. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Hou H, Qin K, Liang Y, Zhang C, Liu D,
Jiang H, Liu K, Zhu J, Lv H, Li T and Zhang X: Concurrent TP53
mutations predict poor outcomes of EGFR-TKI treatments in Chinese
patients with advanced NSCLC. Cancer Manag Res. 11:5665–5675.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Hellyer JA, Stehr H, Das M, Padda SK,
Ramchandran K, Neal JW, Diehn M and Wakelee HA: Impact of
KEAP1/NFE2L2/CUL3 mutations on duration of response to EGFR
tyrosine kinase inhibitors in EGFR mutated non-small cell lung
cancer. Lung Cancer. 134:42–45. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Xuhong JC, Qi XW, Zhang Y and Jiang J:
Mechanism, safety and efficacy of three tyrosine kinase inhibitors
lapatinib, neratinib and pyrotinib in HER2-positive breast cancer.
Am J Cancer Res. 9:2103–2119. 2019.PubMed/NCBI
|