1
|
Glazer AM, Rigel DS, Winkelmann RR and
Farberg AS: Clinical diagnosis of skin cancer: Enhancing inspection
and early recognition. Dermatol Clin. 35:409–416. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
De Vries E, Elder DE, Bray F, Thompson JF,
Coebergh JW, Barnhill RL, Cerroni L, van Muijen GNP, Ruiter DJ,
Scolyer RA, et al: Chapter 2: Melanocytic tumours. Malignant
melanoma: Introduction. In: World Health Organization
Classification of Tumours. Pathology and Genetics of Skin Tumours.
LeBoit PE, Burg G, Weedon D and Sarasin A (eds). IARC Press, Lyon,
pp52-65, 2006.
|
3
|
Gershenwald GE, Scolyer RA, Hess KR,
Thompson JF, Long GV, Ross MI, Lazar AJ, Atkins MB, Balch CM,
Bamhill RL, et al: Part X. Skin-47. Melanoma of the Skin. In: AJCC
Cancer Staging Manual, 8th edition. Amin MB, Edge S, Greene F, Byrd
DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess
KR, Sullivan DC, et al (eds). Springer, Chicago, IL,
pp563-585, 2017.
|
4
|
Lazar A and Bastian B: Melanoma. In:
McKee's Pathology of the Skin. 4th edition. Calonje JE, Brenn T,
Lazar A and McKee P (eds). Elsevier/Saunders, Edinburgh,
pp1221-1267, 2012.
|
5
|
Matthews N, Li W, Qureshi A, Weinstock M
and Cho E: Epidemiology of melanoma. In: Cutaneous Melanoma:
Etiology and Therapy. Ward WH and Farma JM (eds) Codon
Publications, Brisbane, pp3-23, 2017.
|
6
|
World Cancer Research Fund, American
Institute for Cancer Research: Worldwide Cancer Data, Global Cancer
Statistics for the most common cancers. WCRF International, London,
2019. https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data.
Accessed May 22, 2019.
|
7
|
Curtin JA, Fridlyand J, Kageshita T, Patel
HN, Busam KJ, Kutzner H, Cho KW, Aiba S, Brocker EB, LeBoit PE, et
al: Distinct sets of genetic alterations in melanoma. N Engl J Med.
353:2135–2147. 2005.PubMed/NCBI View Article : Google Scholar
|
8
|
Palmieri G, Ombra M, Colombino M, Casula
M, Sini M, Manca A, Paliogiannis P, Ascierto PA and Cossu A:
Multiple molecular pathways in melanomagenesis: Characterization of
therapeutic targets. Front Oncol. 5(183)2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Giehl K: Oncogenic Ras in tumor
progression and metastasis. Biol Chem. 386:193–205. 2005.PubMed/NCBI View Article : Google Scholar
|
10
|
Lo MC, Paterson A, Maraka J, Clark R,
Goodwill J, Nobes J, Garioch J, Moncrieff M, Rytina E and Igali L:
A UK feasibility and validation study of the VE1 monoclonal
antibody immunohistochemistry stain for BRAF-V600E mutations in
metastatic melanoma. Br J Cancer. 115:223–227. 2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Long GV, Wilmott JS, Capper D, Preusser M,
Zhang YX, Thompson JF, Kefford RF, von Deimling A and Scolyer RA:
Immunohistochemistry is highly sensitive and specific for the
detection of V600E BRAF mutation in melanoma. Am J Surg Pathol.
37:61–65. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Colomba E, Helias-Rodzewicz Z, Von
Deimling A, Marin C, Terrones N, Pechaud D, Surel S, Côté JF,
Peschaud F, Capper D, et al: Detection of BRAF p.V600E mutations in
melanomas: Comparison of four methods argues for sequential use of
immunohistochemistry and pyrosequencing. J Mol Diagn. 15:94–100.
2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Boursault L, Haddad V, Vergier B,
Cappellen D, Bellocq JP, Jouary T and Merlio JP: Homogénéité et
conservation du statut BRAF entre mélanome primitif et métastases
déterminées par immunohistochimie et biologie moléculaire. Ann
Dermatol Venereol. 140(S396)2013.
|
14
|
Tetzlaff MT, Pattanaprichakul P, Wargo J,
Fox PS, Patel KP, Estrella JS, Broaddus RR, Williams MD, Davies MA,
Routbort MJ, et al: Utility of BRAF V600E immunohistochemistry
expression pattern as a surrogate of BRAF mutation status in 154
patients with advanced melanoma. Hum Pathol. 46:1101–1110.
2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Box NF, Vukmer TO and Terzian T: Targeting
p53 in melanoma. Pigment Cell Melanoma Res. 27:8–10.
2014.PubMed/NCBI View Article : Google Scholar
|
16
|
Köbel M, Piskorz AM, Lee S, Lui S, LePage
C, Marass F, Rosenfeld N, Mes Masson AM and Brenton JD: Optimized
p53 immunohistochemistry is an accurate predictor of TP53 mutation
in ovarian carcinoma. J Pathol Clin Res. 2:247–258. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Kastelein F, Biermann K, Steyerberg EW,
Verheij J, Kalisvaart M, Looijenga LH, Stoop HA, Walter L, Kuipers
EJ, Spaander MC, et al: Aberrant p53 protein expression is
associated with an increased risk of neoplastic progression in
patients with Barrett's oesophagus. Gut. 62:1676–1683.
2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Rodrigues NR, Rowan A, Smith ME, Kerr IB,
Bodmer WF, Gannon JV and Lane DP: p53 mutations in colorectal
cancer. Proc Natl Acad Sci USA. 87:7555–7559. 1990.PubMed/NCBI View Article : Google Scholar
|
19
|
Iggo R, Gatter K, Bartek J, Lane D and
Harris AL: Increased expression of mutant forms of p53 oncogene in
primary lung cancer. Lancet. 335:675–679. 1990.PubMed/NCBI View Article : Google Scholar
|
20
|
Guedes LB, Almutairi F, Haffner MC,
Rajoria G, Liu Z, Klimel S, Zoino R, Yousefi K, Sharma R, De Marzo
AM, et al: Analytic, preanalytic, and clinical validation of p53
IHC for detection of TP53 missense mutation in prostate cancer.
Clin Cancer Res. 23:4693–4703. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Lepelley P, Preudhomme C, Vanrumbeke M,
Quesnel B, Cosson A and Fenaux P: Detection of p53 mutations in
hematological malignancies: Comparison between immunocytochemistry
and DNA analysis. Leukemia. 8:1342–1349. 1994.PubMed/NCBI
|
22
|
Dobes P, Podhorec J, Coufal O, Jureckova
A, Petrakova K, Vojtesek B and Hrstka R: Influence of mutation type
on prognostic and predictive values of TP53 status in primary
breast cancer patients. Oncol Rep. 32:1695–1702. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Albino AP, Vidal MJ, McNutt NS, Shea CR,
Prieto VG, Nanus DM, Palmer JM and Hayward NK: Mutation and
expression of the p53 gene in human malignant melanoma. Melanoma
Res. 4:35–45. 1994.PubMed/NCBI View Article : Google Scholar
|
24
|
Akslen LA, Monstad SE, Larsen B, Straume O
and Ogreid D: Frequent mutations of the p53 gene in cutaneous
melanoma of the nodular type. Int J Cancer. 79:91–95.
1998.PubMed/NCBI View Article : Google Scholar
|
25
|
Sparrow LE, English DR, Heenan PJ, Dawkins
HJ and Taran J: Prognostic significance of p53 over-expression in
thin melanomas. Melanoma Res. 5:387–392. 1995.PubMed/NCBI View Article : Google Scholar
|
26
|
Florenes VA, Oyjord T, Holm R, Skrede M,
Borresen AL, Nesland JM and Fodstad O: TP53 allele loss, mutations
and expression in malignant melanoma. Br J Cancer. 69:253–259.
1994.PubMed/NCBI View Article : Google Scholar
|
27
|
Weiss J, Heine M, Arden KC, Körner B,
Pilch H, Herbst RA and Jung EG: Mutation and expression of TP53 in
malignant melanomas. Recent Results Cancer Res. 139:137–154.
1995.PubMed/NCBI View Article : Google Scholar
|
28
|
Soussi T, Legros Y, Lubin R, Ory K and
Schlichtholz B: Multifactorial analysis of p53 alterations in human
cancer: A review. Int J Cancer. 57:1–9. 1994.PubMed/NCBI View Article : Google Scholar
|
29
|
Hussein MR: The TP53 tumor supressor gene
and melanoma tumorigenesis: Is there a relationship? Tumor Biol.
25:200–207. 2004.PubMed/NCBI View Article : Google Scholar
|
30
|
Le Mercier M, D'Haene N, De Nève N,
Blanchard O, Degand C, Rorive S and Salmon I: Next-generation
sequencing improves the diagnosis of thyroid FNA specimens with
indeterminate cytology. Histopathology. 66:215–224. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
D'Haene N, Le Mercier M, De Nève N,
Blanchard O, Delaunoy M, El Housni H, Dessars B, Heimann P,
Remmelink M, Demetter P, et al: Clinical validation of targeted
next generation sequencing for colon and lung cancers. PLoS One.
10(e0138245)2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Lebrun L, Milowich D, Le Mercier M, Allard
J, Van Eycke YR, Roumeguere T, Decaestecker C, Salmon I and Rorive
S: UCA1 overexpression is associated with less aggressive subtypes
of bladder cancer. Oncol Rep. 40:2497–2506. 2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Miraflor AP, de Abreu FB, Peterson JD,
Turner SA, Amos CI, Tsongalis GJ and Yan S: Somatic mutation
analysis in melanoma using targeted next generation sequencing. Exp
Mol Pathol. 103:172–177. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Holderfield M, Deuker MM, McCormick F and
McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated
melanoma and beyond. Nat Rev Cancer. 4:455–467. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Coit DG, Thompson JA, Albertini MR, Barker
C, Carson WE, Contreras C, Daniels GA, DiMaio D, Fields RC, Fleming
MD, et al: Cutaneous Melanoma, Version 2.2019, NCCN clinical
practice guidelines in oncology. J Natl Compr Canc Netw.
17:367–402. 2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Lee JH, Choi JW and Kim YS: Frequencies of
BRAF and NRAS mutations are different in histological types and
sites of origin of cutaneous melanoma: A meta-analysis. Br J
Dermatol. 164:776–784. 2011.PubMed/NCBI View Article : Google Scholar
|
37
|
Kudchadkar R, Paraiso KH and Smalley KS:
Targeting mutant BRAF in melanoma: Current status and future
development of combination therapy strategies. Cancer J.
18:124–131. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Thiel A, Moza M, Kytola S, Orpana A,
Jahkola T, Hernberg M, Virolainen S and Ristimaki A: Prospective
immunohistochemical analysis of BRAF V600E mutation in melanoma.
Hum Pathol. 46:169–175. 2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Marin C, Beauchet A, Capper D, Zimmermann
U, Julie C, Ilie M, Saiag P, von Deimling A, Hofman P and Emile JF:
Detection of BRAF p.V600E mutations in melanoma by
immunohistochemistry has a good interobserver reproducibility. Arch
Pathol Lab Med. 138:71–75. 2014.PubMed/NCBI View Article : Google Scholar
|
40
|
Pearlstein MV, Zedek DC, Ollila DW, Treece
A, Gulley ML, Groben PA and Thomas NE: Validation of the VE1
Immunostain for the BRAF V600E mutation in melanoma. J Cutan
Pathol. 41:724–732. 2014.PubMed/NCBI View Article : Google Scholar
|
41
|
Schirosi L, Strippoli S, Gaudio F,
Graziano G, Popescu O, Guida M, Simone G and Mangia A: Is
immunohistochemistry of BRAF V600E useful as a screening tool and
during progression disease of melanoma patients? BMC Cancer.
16(905)2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Cheng L, Lopez-Beltran A, Massari F,
MacLennan GT and Montironi R: Molecular testing for BRAF mutations
to inform melanoma treatment decisions: A move toward precision
medicine. Mod Pathol. 31:24–38. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Bisschop C, Ter Elst A, Bosman LJ,
Platteel I, Jalving M, van den Berg A, Diepstra A, van Hemel B,
Diercks GFH, Hospers GAP and Schuuring E: Rapid BRAF mutation tests
in patients with advanced melanoma: Comparison of
immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation
Platform. Melanoma Res. 28:96–104. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Lu M, Miller P and Lu X: Restoring the
tumour suppressive function of p53 as a parallel strategy in
melanoma therapy. FEBS Lett. 588:2616–2621. 2014.PubMed/NCBI View Article : Google Scholar
|
45
|
Onyshchenko M: The puzzle of predicting
response to immune checkpoint blockade. EBioMedicine. 33:18–19.
2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Xiao W, Du N, Huang T, Guo J, Mo X, Yuan
T, Chen Y, Ye T, Xu C, Wang W, et al: TP53 mutation as potential
negative predictor for response of Anti-CTLA-4 therapy in
metastatic melanoma. EBioMedicine. 32:119–124. 2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Siroy AE, Boland GM, Milton DR, Roszik J,
Frankian S, Malke J, Haydu L, Prieto VG, Tetzlaff M, Ivan D, et al:
Beyond BRAF(V600): Clinical mutation panel testing by
next-generation sequencing in advanced melanoma. J Invest Dermatol.
135:508–515. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Murniak B and Hortobagyi T:
Immunohistochemical correlates of TP53 somatic mutations in cancer.
Oncotarget. 7:64910–64920. 2016.PubMed/NCBI View Article : Google Scholar
|