1
|
Pelcovits A and Niroula R: Acute myeloid
leukemia: A review. R I Med J (2013). 103:38–40. 2020.PubMed/NCBI
|
2
|
Department of Health Promotion
Administration, Ministry of Health and Welfare. Cancer Registry
Annual Report, Taiwan, 2016.
|
3
|
Wu SJ, Chiang CJ, Lin CT, Tien HF and Lai
MS: A nationwide population-based cross-sectional comparison of
hematological malignancies incidences between Taiwan and the United
States of America. Ann Hematol. 95:165–167. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Doulatov S, Notta F, Laurenti E and Dick
JE: Hematopoiesis: A human perspective. Cell Stem Cell. 10:120–136.
2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Marcucci G, Haferlach T and Döhner H:
Molecular genetics of adult acute myeloid leukemia: Prognostic and
therapeutic implications. J Clin Oncol. 29:475–486. 2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Čolović N, Denčić-Fekete M, Peruničić M
and Jurišić V: Clinical characteristics and treatment outcome of
hypocellular acute myeloid leukemia based on WHO classification.
Indian J Hematol Blood Transfus. 36:59–63. 2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Jurisić V, Pavlović S, Colović N,
Djordjevic V, Bunjevacki V, Janković G and Colović M: Single
institute study of FLT3 mutation in acute myeloid leukemia with
near tetraploidy in Serbia. J Genet. 88:149–152. 2009.PubMed/NCBI View Article : Google Scholar
|
8
|
Rowe JM: The increasing genomic complexity
of acute myeloid leukemia. Best Pract Res Clin Haematol.
27:209–213. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Li S, Mason CE and Melnick A: Genetic and
epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet
Dev. 36:100–106. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang TJ, Zhou JD, Zhang W, Lin J, Ma JC,
Wen XM, Yuan Q, Li XX, Xu ZJ and Qian J: H19 overexpression
promotes leukemogenesis and predicts unfavorable prognosis in acute
myeloid leukemia. Clin Epigenetics. 10(47)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Wrzeska M and Rejduch B: Genomic
imprinting in mammals. J Appl Genet. 45:427–433. 2004.PubMed/NCBI
|
12
|
Tucci V, Isles AR, Kelsey G and
Ferguson-Smith AC: Erice Imprinting Group. Genomic imprinting and
physiological processes in mammals. Cell. 176:952–965.
2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Ferguson-Smith AC and Bourc'his D: The
discovery and importance of genomic imprinting. Elife.
7(e42368)2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Yang MY, Lin PM, Yang CH, Hu ML, Chen IY,
Lin SF and Hsu CM: Loss of ZNF215 imprinting is associated with
poor five-year survival in patients with cytogenetically
abnormal-acute myeloid leukemia. Blood Cells Mol Dis.
90(102577)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Sellers ZP, Bolkun L, Kloczko J,
Wojtaszewska ML, Lewandowski K, Moniuszko M, Ratajczak MZ and
Schneider G: Increased methylation upstream of the MEG3 promotor is
observed in acute myeloid leukemia patients with better overall
survival. Clin Epigenetics. 11(50)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Yu Y, Kou D, Liu B, Huang Y, Li S, Qi Y,
Guo Y, Huang T, Qi X and Jia L: LncRNA MEG3 contributes to drug
resistance in acute myeloid leukemia by positively regulating ALG9
through sponging miR-155. Int J Lab Hematol. 42:464–472.
2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Shaffer LG, McGowan-Jordan J and Schmid M:
ISCN 2016: An International System for Human Cytogenetic
Nomenclature. Basel, Switzerland, Karger, 2013.
|
18
|
Campbell LJ and White JS: Cytogenetic
analysis in acute myeloid leukaemia. Methods Mol Biol. 730:63–77.
2011.PubMed/NCBI View Article : Google Scholar
|
19
|
Morison IM, Paton CJ and Cleverley SD: The
imprinted gene and parent-of-origin effect database. Nucleic Acids
Res. 29:275–276. 2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Hsu CM, Lin PM, Lin HC, Lai CC, Yang CH,
Lin SF and Yang MY: Altered expression of imprinted genes in
squamous cell carcinoma of the head and neck. Anticancer Res.
36:2251–2258. 2016.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
22
|
Walker A and Marcucci G: Molecular
prognostic factors in cytogenetically normal acute myeloid
leukemia. Expert Rev Hematol. 5:547–558. 2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Sun H, Pan Y, He B, Deng Q, Li R, Xu Y,
Chen J, Gao T, Ying H, Wang F, et al: Gene therapy for human
colorectal cancer cell lines with recombinant adenovirus 5 based on
loss of the insulin-like growth factor 2 imprinting. Int J Oncol.
46:1759–1767. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Pan Y, He B, Li T, Zhu C, Zhang L, Wang B,
Xu Y, Qu L, Hoffman AR, Wang S and Hu J: Targeted tumor gene
therapy based on loss of IGF2 imprinting. Cancer Biol Ther.
10:290–298. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang Y and Tycko B: Monoallelic
expression of the human H19 gene. Nat Genet. 1:40–44.
1992.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhao TT and Liu X: LncRNA-H19 inhibits
apoptosis of acute myeloid leukemia cells via targeting miR-29a-3p.
Eur Rev Med Pharmacol Sci. 23(3 Suppl):224–231. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhao TF, Jia HZ, Zhang ZZ, Zhao XS, Zou
YF, Zhang W, Wan J and Chen XF: LncRNA H19 regulates ID2 expression
through competitive binding to hsa-miR-19a/b in acute myelocytic
leukemia. Mol Med Rep. 16:3687–3693. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Hofmann WK, Takeuchi S, Frantzen MA,
Hoelzer D and Koeffler HP: Loss of genomic imprinting of
insulin-like growth factor 2 is strongly associated with cellular
proliferation in normal hematopoietic cells. Exp Hematol.
30:318–323. 2002.PubMed/NCBI View Article : Google Scholar
|
29
|
Mofidi M, Rahgozar S and Pouyanrad S:
Increased level of long non coding RNA H19 is correlated with the
downregulation of miR-326 and BCL-2 genes in pediatric acute
lymphoblastic leukemia, a possible hallmark for leukemogenesis. Mol
Biol Rep. 48:1531–1538. 2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Asadi M, Gholampour MA, Kompani F and
Alizadeh S: Expression of long non-coding RNA H19 in acute
lymphoblastic leukemia. Cell J. 25:1–10. 2023.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhou JD, Lin J, Zhang TJ, Ma JC, Li XX,
Wen XM, Guo H, Xu ZJ, Deng ZQ, Zhang W and Qian J:
Hypomethylation-mediated H19 overexpression increases the risk of
disease evolution through the association with BCR-ABL transcript
in chronic myeloid leukemia. J Cell Physiol. 233:2444–2450.
2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Yang J, Yin Z, Li Y, Liu Y, Huang G, Gu C
and Fei J: The identification of long non-coding RNA H19 target and
its function in chronic myeloid leukemia. Mol Ther Nucleic Acids.
19:1368–1378. 2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Liu FT, Pan H, Xia GF, Qiu C and Zhu ZM:
Prognostic and clinicopathological significance of long noncoding
RNA H19 overexpression in human solid tumors: Evidence from a
meta-analysis. Oncotarget. 7:83177–83186. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Hashemi M, Moosavi MS, Abed HM, Dehghani
M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M,
Salimimoghadam S, Gunduz ES, et al: Long non-coding RNA (lncRNA)
H19 in human cancer: From proliferation and metastasis to therapy.
Pharmacol Res. 184(106418)2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Colovic M, Jurisic V, Pavlovic S, Terzic T
and Colovic N: FLT3/D835 mutation and inversion of chromosome 16 in
leukemic transformation of myelofibrosis. Eur J Intern Med.
17:434–435. 2006.PubMed/NCBI View Article : Google Scholar
|
36
|
Döhner H, Estey EH, Amadori S, Appelbaum
FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson
RA, et al: Diagnosis and management of acute myeloid leukemia in
adults: Recommendations from an international expert panel, on
behalf of the European LeukemiaNet. Blood. 115:453–474.
2010.PubMed/NCBI View Article : Google Scholar
|
37
|
Shen R, Cheng T, Xu C, Yung RC, Bao J, Li
X, Yu H, Lu S, Xu H, Wu H, et al: Novel visualized quantitative
epigenetic imprinted gene biomarkers diagnose the malignancy of ten
cancer types. Clin Epigenetics. 12(71)2020.PubMed/NCBI View Article : Google Scholar
|