1
|
Fuller R, Landrigan PJ, Balakrishnan K,
Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen
A, Corra L, et al: Pollution and health: A progress update. Lancet
Planet Health. 6:e535–e547. 2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33.
2022.PubMed/NCBI View Article : Google Scholar
|
3
|
Adams JL, Smothers J, Srinivasan R and
Hoos A: Big opportunities for small molecules in immuno-oncology.
Nat Rev Drug Discov. 14:603–622. 2015.PubMed/NCBI View
Article : Google Scholar
|
4
|
Hoption Cann SA, van Netten JP and van
Netten C: Dr William Coley and tumour regression: A place in
history or in the future. Postgrad Med J. 79:672–680.
2003.PubMed/NCBI
|
5
|
Fares J, Fares MY, Khachfe HH, Salhab HA
and Fares Y: Molecular principles of metastasis: A hallmark of
cancer revisited. Signal Transduct Target Ther.
5(28)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Miller JF and Sadelain M: The journey from
discoveries in fundamental immunology to cancer immunotherapy.
Cancer Cell. 27:439–449. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Kyrysyuk O and Wucherpfennig KW: Designing
cancer immunotherapies that engage T cells and NK cells. Annu Rev
Immunol. 41:17–38. 2023.PubMed/NCBI View Article : Google Scholar
|
8
|
Zagorulya M and Spranger S: Once upon a
prime: DCs shape cancer immunity. Trends Cancer. 9:172–184.
2023.PubMed/NCBI View Article : Google Scholar
|
9
|
Thommen DS and Schumacher TN: T Cell
Dysfunction in Cancer. Cancer Cell. 33:547–562. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Briukhovetska D, Dorr J, Endres S, Libby
P, Dinarello CA and Kobold S: Interleukins in cancer: From biology
to therapy. Nat Rev Cancer. 21:481–499. 2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Takeuchi Y and Nishikawa H: Roles of
regulatory T cells in cancer immunity. Int Immunol. 28:401–409.
2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Chow A, Perica K, Klebanoff CA and Wolchok
JD: Clinical implications of T cell exhaustion for cancer
immunotherapy. Nat Rev Clin Oncol. 19:775–790. 2022.PubMed/NCBI View Article : Google Scholar
|
13
|
Hibino S, Eto S, Hangai S, Endo K,
Ashitani S, Sugaya M, Osawa T, Soga T, Taniguchi T and Yanai H:
Tumor cell-derived spermidine is an oncometabolite that suppresses
TCR clustering for intratumoral CD8(+) T cell activation. Proc Natl
Acad Sci USA. 120(e2305245120)2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Maruhashi T, Sugiura D, Okazaki IM,
Shimizu K, Maeda TK, Ikubo J, Yoshikawa H, Maenaka K, Ishimaru N,
Kosako H, et al: Binding of LAG-3 to stable peptide-MHC class II
limits T cell function and suppresses autoimmunity and anti-cancer
immunity. Immunity. 55:912–924 e8. 2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Spassova I, Ugurel S, Kubat L, Zimmer L,
Terheyden P, Mohr A, Björn Andtback H, Villabona L, Leiter U,
Eigentler T, et al: Clinical and molecular characteristics
associated with response to therapeutic PD-1/PD-L1 inhibition in
advanced Merkel cell carcinoma. J Immunother Cancer.
10(e003198)2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Rafiq S, Hackett CS and Brentjens RJ:
Engineering strategies to overcome the current roadblocks in CAR T
cell therapy. Nat Rev Clin Oncol. 17:147–167. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Finck AV, Blanchard T, Roselle CP,
Golinelli G and June CH: Engineered cellular immunotherapies in
cancer and beyond. Nat Med. 28:678–689. 2022.PubMed/NCBI View Article : Google Scholar
|
18
|
Jensen MC and Riddell SR: Designing
chimeric antigen receptors to effectively and safely target tumors.
Curr Opin Immunol. 33:9–15. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Brocker T and Karjalainen K: Signals
through T cell receptor-zeta chain alone are insufficient to prime
resting T lymphocytes. J Exp Med. 181:1653–1659. 1995.PubMed/NCBI View Article : Google Scholar
|
20
|
Frauwirth KA and Thompson CB: Activation
and inhibition of lymphocytes by costimulation. J Clin Invest.
109:295–299. 2002.PubMed/NCBI View
Article : Google Scholar
|
21
|
Kagoya Y, Tanaka S, Guo T, Anczurowski M,
Wang CH, Saso K, Butler MO, Minden MD and Hirano N: A novel
chimeric antigen receptor containing a JAK-STAT signaling domain
mediates superior antitumor effects. Nat Med. 24:352–359.
2018.PubMed/NCBI View
Article : Google Scholar
|
22
|
Jan M, Scarfo I, Larson RC, Walker A,
Schmidts A, Guirguis AA, Gasser JA, Słabicki M, Bouffard AA,
Castano AP, et al: Reversible ON- and OFF-switch chimeric antigen
receptors controlled by lenalidomide. Sci Transl Med.
13(eabb6295)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Aspuria PJ, Vivona S, Bauer M, Semana M,
Ratti N, McCauley S, Riener R, de Waal Malefyt R, Rokkam D,
Emmerich J, et al: An orthogonal IL-2 and IL-2Rβ system drives
persistence and activation of CAR T cells and clearance of bulky
lymphoma. Sci Transl Med. 13(eabg7565)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Shirasu N and Kuroki M: Functional design
of chimeric T-cell antigen receptors for adoptive immunotherapy of
cancer: Architecture and outcomes. Anticancer Res. 32:2377–2383.
2012.PubMed/NCBI
|
25
|
Gattinoni L, Finkelstein SE, Klebanoff CA,
Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C,
Heimann DM, et al: Removal of homeostatic cytokine sinks by
lymphodepletion enhances the efficacy of adoptively transferred
tumor-specific CD8+ T cells. J Exp Med. 202:907–912.
2005.PubMed/NCBI View Article : Google Scholar
|
26
|
Majzner RG and Mackall CL: Tumor Antigen
Escape from CAR T-cell Therapy. Cancer Discov. 8:1219–1226.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Maude SL, Teachey DT, Porter DL and Grupp
SA: CD19-targeted chimeric antigen receptor T-cell therapy for
acute lymphoblastic leukemia. Blood. 125:4017–4023. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Brudno JN, Maric I, Hartman SD, Rose JJ,
Wang M, Lam N, Stetler-Stevenson M, Salem D, Yuan C, Pavletic S, et
al: T cells genetically modified to express an Anti-B-Cell
maturation antigen chimeric antigen receptor cause remissions of
poor-prognosis relapsed multiple myeloma. J Clin Oncol.
36:2267–2280. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Cohen AD, Garfall AL, Stadtmauer EA,
Melenhorst JJ, Lacey SF, Lancaster E, Vogl DT, Weiss BM, Dengel K,
Nelson A, et al: B cell maturation antigen-specific CAR T cells are
clinically active in multiple myeloma. J Clin Invest.
129:2210–2221. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Brown CE, Alizadeh D, Starr R, Weng L,
Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J,
Simpson J, et al: Regression of glioblastoma after chimeric antigen
receptor T-Cell therapy. N Engl J Med. 375:2561–2569.
2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Poondla N, Sheykhhasan M, Akbari M, Samadi
P, Kalhor N and Manoochehri H: The Promise of CAR T-Cell therapy
for the treatment of cancer stem cells: A short review. Curr Stem
Cell Res Ther. 17:400–406. 2022.PubMed/NCBI View Article : Google Scholar
|
32
|
Yan Z, Cao J, Cheng H, Qiao J, Zhang H,
Wang Y, Shi M, Lan J, Fei X, Jin L, et al: A combination of
humanised anti-CD19 and anti-BCMA CAR T cells in patients with
relapsed or refractory multiple myeloma: A single-arm, phase 2
trial. Lancet Haematol. 6:e521–e529. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D,
Han X, Liu Y, Zhang W, Wang C, et al: Bispecific CAR T cells
targeting both CD19 and CD22 for therapy of adults with relapsed or
refractory B cell acute lymphoblastic leukemia. J Hematol Oncol.
13(30)2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Zeng W, Zhang Q, Zhu Y, Ou R, Peng L, Wang
B, Shen H, Liu Z, Lu L, Zhang P and Liu S: Engineering Novel
CD19/CD22 Dual-Target CAR T cells for improved anti-tumor activity.
Cancer Invest. 40:282–292. 2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Cordoba S, Onuoha S, Thomas S, Pignataro
DS, Hough R, Ghorashian S, Vora A, Bonney D, Veys P, Rao K, et al:
CAR T cells with dual targeting of CD19 and CD22 in pediatric and
young adult patients with relapsed or refractory B cell acute
lymphoblastic leukemia: A phase 1 trial. Nat Med. 27:1797–1805.
2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Sterner RC and Sterner RM: CAR T cell
therapy: Current limitations and potential strategies. Blood Cancer
J. 11(69)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Wilkie S, van Schalkwyk MC, Hobbs S,
Davies DM, van der Stegen SJ, Pereira AC, Burbridge SE, Box C,
Eccles SA and Maher J: Dual targeting of ErbB2 and MUC1 in breast
cancer using chimeric antigen receptors engineered to provide
complementary signaling. J Clin Immunol. 32:1059–1070.
2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Kong Y, Tang L, You Y, Li Q and Zhu X:
Analysis of causes for poor persistence of CAR T cell therapy in
vivo. Front Immunol. 14(1063454)2023.PubMed/NCBI View Article : Google Scholar
|
39
|
Al-Haideri M, Tondok SB, Safa SH, Maleki
AH, Rostami S, Jalil AT, Al-Gazally ME, Alsaikhan F, Rizaev JA,
Mohammad TAM and Tahmasebi S: CAR T cell combination therapy: The
next revolution in cancer treatment. Cancer Cell Int.
22(365)2022.PubMed/NCBI View Article : Google Scholar
|
40
|
Mohammadi M, Akhoundi M, Malih S,
Mohammadi A and Sheykhhasan M: Therapeutic roles of CAR T cells in
infectious diseases: Clinical lessons learnt from cancer. Rev Med
Virol. 32(e2325)2022.PubMed/NCBI View
Article : Google Scholar
|
41
|
Di Stasi A, Tey SK, Dotti G, Fujita Y,
Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG,
Grilley B, et al: Inducible apoptosis as a safety switch for
adoptive cell therapy. N Engl J Med. 365:1673–1683. 2011.PubMed/NCBI View Article : Google Scholar
|
42
|
Juillerat A, Tkach D, Busser BW, Temburni
S, Valton J, Duclert A, Poirot L, Depil S and Duchateau P:
Modulation of chimeric antigen receptor surface expression by a
small molecule switch. BMC Biotechnol. 19(44)2019.PubMed/NCBI View Article : Google Scholar
|