Targeting signaling pathways with andrographolide in cancer therapy (Review)
- Authors:
- Nur Shahirah Shaharudin
- Gurmeet Kaur Surindar Singh
- Teh Lay Kek
- Sadia Sultan
-
Affiliations: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia, Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia - Published online on: September 5, 2024 https://doi.org/10.3892/mco.2024.2779
- Article Number: 81
-
Copyright : © Shaharudin et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Fotsing Yannick Stéphane F, Kezetas Jean Jules B, El-Saber Batiha G, Ali I and Ndjakou Bruno L: Extraction of bioactive compounds from medicinal plants and herbs. In: El-Shemy HA (ed). Natural Medicinal Plants. IntechOpen; London, UK, 2022. | |
Balekundri A and Mannur V: Quality control of the traditional herbs and herbal products: A review. Futur J Pharm Sci. 6(67)2020. | |
Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P and Gallelli L: Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human MicroRNA modulation. Molecules. 25(63)2019.PubMed/NCBI View Article : Google Scholar | |
Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, Sturgill MG and Yang CS: Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr. 133:4172–4177. 2003.PubMed/NCBI View Article : Google Scholar | |
Chunarkar-Patil P, Kaleem M, Mishra R, Ray S, Ahmad A, Verma D, Bhayye S, Dubey R, Singh HN and Kumar S: Anticancer Drug discovery based on natural products: From computational approaches to clinical studies. Biomedicines. 12(201)2024.PubMed/NCBI View Article : Google Scholar | |
Pandey AK, Gulati S, Gupta A and Tripathi YC: Variation in andrographolide content among different accessions of Andrographis paniculata. Pharma Innov J. 8:140–144. 2019. | |
Liang D, Zhang WM, Liang X, Tian HY, Zhang XM, Li X and Gao WY: A review on the extraction and separation of andrographolide from Andrographis paniculata: Extraction selectivity, current challenges and strategies. Tradit Med Res. 8(38)2023. | |
Sharma S, Sharma YP and Bhardwaj C: HPLC quantification of andrographolide in different parts of Andrographis paniculata (Burm.f.) Wall. ex Nees. J Pharmacogn Phytochem. 7:168–171. 2018. | |
Kandanur SGS, Tamang N, Golakoti NR and Nanduri S: Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur J Med Chem. 176:513–533. 2019.PubMed/NCBI View Article : Google Scholar | |
Tran QTN, Tan WSD, Wong WSF and Chai CLL: Polypharmacology of andrographolide: Beyond one molecule one target. Nat Prod Rep. 38:682–692. 2021.PubMed/NCBI View Article : Google Scholar | |
Phunikom N, Boonmuen N, Kheolamai P, Suksen K, Manochantr S, Tantrawatpan C and Tantikanlayaporn D: Andrographolide promotes proliferative and osteogenic potentials of human placenta-derived mesenchymal stem cells through the activation of Wnt/β-catenin signaling. Stem Cell Res Ther. 12(241)2021.PubMed/NCBI View Article : Google Scholar | |
Nair DS and Manjula S: Induction of root endosymbiosis as a highly sustainable and efficient strategy for overproduction of the medicinally important diterpenoid lactone-andrographolide in Andrographis paniculata (Burm. F.) Wall. ex Nees. Ind Crops Prod. 156(112835)2020. | |
Dai Y, Chen SR, Chai L, Zhao J and Wang Y and Wang Y: Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 59 (Suppl 1):S17–S29. 2019.PubMed/NCBI View Article : Google Scholar | |
Tundis R, Patra JK, Bonesi M, Das S, Nath R, Das Talukdar A, Das G and Loizzo MR: Anti-cancer agent: The labdane diterpenoid-andrographolide. Plants (Basel). 12(1969)2023.PubMed/NCBI View Article : Google Scholar | |
Cai W, Li J, Chen C, Wu J, Li J and Xue X: Design, synthesis, and anticancer evaluation of novel andrographolide derivatives bearing an α,β-unsaturated ketone moiety. Bioorg Chem. 112(104941)2021.PubMed/NCBI View Article : Google Scholar | |
Arsakhant P, Sirion U, Chairoungdua A, Suksen K, Piyachaturawat P, Suksamrarn A and Saeeng R: Design and synthesis of C-12 dithiocarbamate andrographolide analogues as an anticancer agent. Bioorg Med Chem Lett. 30(127263)2020.PubMed/NCBI View Article : Google Scholar | |
Cheng CR, Zheng Z, Liang RM, Li XF, Jiang QQ, Yue L, Wang Q, Ding J and Liu Y: Preparation and cytotoxic Activity of 3,19-analogues of 12-thioether andrographolide. Chem Nat Compd. 56:264–269. 2020. | |
Beesetti SL, Jayadev M, Subhashini GV, Mansour L, Alwasel S and Harrath AH: Andrographolide as a therapeutic agent against breast and ovarian cancers. Open Life Sci. 14:462–469. 2019.PubMed/NCBI View Article : Google Scholar | |
He X, Li J, Gao H, Qiu F, Hu K, Cui X and Yao X: Identification of a rare sulfonic acid metabolite of andrographolide in rats. Drug Metab Dispos. 31:983–985. 2003.PubMed/NCBI View Article : Google Scholar | |
Sa-ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, et al: Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod. 84:1261–1270. 2021.PubMed/NCBI View Article : Google Scholar | |
Banerjee M, Parai D, Chattopadhyay S and Mukherjee SK: Andrographolide: Antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol (Praha). 62:237–244. 2017.PubMed/NCBI View Article : Google Scholar | |
Widyawaruyanti A, Asrory M, Ekasari W, Setiawan D, Radjaram A, Tumewu L and Hafid AF: In vivo antimalarial activity of Andrographis paniculata tablets. Procedia Chem. 13:101–104. 2014. | |
Yu Q, Shi Y, Shu C, Ding X, Zhu S, Shen Z and Lou Y: Andrographolide inhibition of Th17-regulated cytokines and JAK1/STAT3 signaling in OVA-stimulated asthma in mice. Evid Based Complement Alternat Med. 2021(6862073)2021.PubMed/NCBI View Article : Google Scholar | |
Astuti NT, Novitasari PR, Tjandrawinata R, Nugroho AE and Pramono S: Anti-diabetic effect of andrographolide from Sambiloto herbs (Andrographis paniculata (Burm.f.) Nees) through the expression of PPARγ and GLUT-4 in adipocytes. Indones J Biotechnol. 27(203)2022. | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Gadi VK and Davidson NE: Practical approach to triple-negative breast cancer. J Oncol Pract. 13:293–300. 2017.PubMed/NCBI View Article : Google Scholar | |
Li L, Yang LL, Yang SL, Wang RQ, Gao H, Lin ZY, Zhao YY, Tang WW, Han R, Wang WJ, et al: Andrographolide suppresses breast cancer progression by modulating tumor-associated macrophage polarization through the Wnt/β-catenin pathway. Phyther Res. 36:4587–4603. 2022.PubMed/NCBI View Article : Google Scholar | |
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, et al: Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 10:1367–1401. 2022.PubMed/NCBI View Article : Google Scholar | |
Aggarwal S, Verma SS, Aggarwal S and Gupta SC: Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol. 68:8–20. 2021.PubMed/NCBI View Article : Google Scholar | |
Hung Y, Leung S, Chiu SP, Li PY, Kan AC, Lo CC, Wong SZ, Luk SL, Lai CC, El Helali A and Chan WW: Perceptions about traditional Chinese medicine use among Chinese breast cancer survivors: A qualitative study. Cancer Med. 12:1997–2007. 2023.PubMed/NCBI View Article : Google Scholar | |
Cohen I, Tagliaferri M and Tripathy D: Traditional Chinese medicine in the treatment of breast cancer. Semin Oncol. 29:563–574. 2002.PubMed/NCBI View Article : Google Scholar | |
Wang R, Wang Y, Fang L, Xie Y, Yang S, Liu S, Fang Y and Zhang Y: Efficacy and safety of traditional Chinese medicine in the treatment of menopause-like syndrome for breast cancer survivors: A systematic review and meta-analysis. BMC Cancer. 24(42)2024.PubMed/NCBI View Article : Google Scholar | |
Shu J, Huang R, Tian Y, Liu Y, Zhu R and Shi G: Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Ann Palliat Med. 9:1965–1975. 2020.PubMed/NCBI View Article : Google Scholar | |
Xia YF, Ye BQ, Li YD, Wang JG, He XJ, Lin X, Yao X, Ma D, Slungaard A, Hebbel RP, et al: Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol. 173:4207–4217. 2004.PubMed/NCBI View Article : Google Scholar | |
Li Z and Wu JC, Sheikh AY, Kraft D, Cao F, Xie X, Patel M, Gambhir SS, Robbins RC, Cooke JP and Wu JC: Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation. 116 (11 Suppl):I46–I54. 2007.PubMed/NCBI View Article : Google Scholar | |
Giordano SH: Breast cancer in men. N Engl J Med. 378:2311–2320. 2018.PubMed/NCBI View Article : Google Scholar | |
Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen PL, Lauttia S, Tynninen O, Joensuu H, et al: Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res. 17(101)2015.PubMed/NCBI View Article : Google Scholar | |
Yang Q, Guo N, Zhou Y, Chen J, Wei Q and Han M: The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B. 10:2156–2170. 2020.PubMed/NCBI View Article : Google Scholar | |
Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC and Balkwill FR: ‘Re-educating’ tumor-associated macrophages by targeting NF-κB. J Exp Med. 205:1261–1268. 2008.PubMed/NCBI View Article : Google Scholar | |
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020.PubMed/NCBI View Article : Google Scholar | |
Ohri A, Robinson A, Liu B, Bhuket T and Wong R: Updated assessment of colorectal cancer incidence in the U.S. by age, sex, and race/ethnicity. Dig Dis Sci. 65:1838–1849. 2020.PubMed/NCBI View Article : Google Scholar | |
Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V and Namdar A: Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 234:17127–17143. 2019.PubMed/NCBI View Article : Google Scholar | |
Lai Y, Wang C, Civan JM, Palazzo JP, Ye Z, Hyslop T, Lin J, Myers RE, Li B, Jiang B, et al: Effects of cancer stage and treatment differences on racial disparities in survival from colon cancer: A United States population-based study. Gastroenterology. 150:1135–1146. 2016.PubMed/NCBI View Article : Google Scholar | |
Xynos ID, Kavantzas N, Tsaousi S, Zacharakis M, Agrogiannis G, Kosmas C, Lazaris A, Sarantonis J, Sougioultzis S, Tzivras D, et al: Factors influencing survival in stage IV colorectal cancer: The influence of DNA ploidy. ISRN Gastroenterol. 2013(490578)2013.PubMed/NCBI View Article : Google Scholar | |
Xie YH, Chen YX and Fang JY: Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 5(22)2020.PubMed/NCBI View Article : Google Scholar | |
García-Alfonso P, Muñoz Martín AJ, Ortega Morán L, Soto Alsar J, Torres Pérez-Solero G, Blanco Codesido M, Calvo Ferrandiz PA and Grasso Cicala S: Oral drugs in the treatment of metastatic colorectal cancer. Ther Adv Med Oncol. 13(17588359211009001)2021.PubMed/NCBI View Article : Google Scholar | |
Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, et al: ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 27:1386–1422. 2016.PubMed/NCBI View Article : Google Scholar | |
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan STS, Šmejkal K, Malaník M, et al: Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics. 9:1923–1951. 2019.PubMed/NCBI View Article : Google Scholar | |
Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, Giannì AB, Baserga C and Martinelli M: Berberine and Tinospora cordifolia exert a potential anticancer effect on colon cancer cells by acting on specific pathways. Int J Immunopathol Pharmacol. 33(2058738419855567)2019.PubMed/NCBI View Article : Google Scholar | |
Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, Das H, Srivastava S, Prasad S and Srivastava SK: Role of phytochemicals in cancer prevention. Int J Mol Sci. 20(4981)2019.PubMed/NCBI View Article : Google Scholar | |
Islam MT, Ali ES, Uddin SJ, Islam MA, Shaw S, Khan IN, Saravi SSS, Ahmad S, Rehman S, Gupta VK, et al: Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett. 420:129–145. 2018.PubMed/NCBI View Article : Google Scholar | |
Shi MD, Lin HH, Lee YC, Chao JK, Lin RA and Chen JH: Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem Biol Interact. 174:201–210. 2008.PubMed/NCBI View Article : Google Scholar | |
Norouzi M and Hardy P: Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater. 121:134–142. 2021.PubMed/NCBI View Article : Google Scholar | |
Torre LA, Siegel RL and Jemal A: Lung cancer statistics. Adv Exp Med Biol. 893:1–19. 2016.PubMed/NCBI View Article : Google Scholar | |
Thandra KC and Barsouk A, Saginala K, Aluru JS and Barsouk A: Epidemiology of lung cancer. Contemp Oncol (Pozn). 25:45–52. 2021.PubMed/NCBI View Article : Google Scholar | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar | |
Commar A, Prasad V and D'Espaignet ET: WHO global report on trends in prevalence of tobacco use 2000-2025, 2021. https://www.who.int/publications/i/item/who-global-report-on-trends-in-prevalence-of-tobacco-use-2000-2025-third-edition. | |
Dougherty SM, Mazhawidza W, Bohn AR, Robinson KA, Mattingly KA, Blankenship KA, Huff MO, McGregor WG and Klinge CM: Gender difference in the activity but not expression of estrogen receptors alpha and beta in human lung adenocarcinoma cells. Endocr Relat Cancer. 13:113–134. 2006.PubMed/NCBI View Article : Google Scholar | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar | |
Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, Mirabello L, Jacobs K, Wheeler W, Yeager M, et al: A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 85:679–691. 2009.PubMed/NCBI View Article : Google Scholar | |
Yokota J, Shiraishi K and Kohno T: Genetic basis for susceptibility to lung cancer: Recent progress and future directions. Adv Cancer Res. 109:51–72. 2010.PubMed/NCBI View Article : Google Scholar | |
Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, et al: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 452:638–642. 2008.PubMed/NCBI View Article : Google Scholar | |
Hussain S: Nanomedicine for treatment of lung cancer. In: Ahmad A, Gadgeel S (eds). Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Advances in Experimental Medicine and Biology. Vol. 890. Springer, Cham, pp137-147, 2016. | |
Sun A, Durocher-Allen LD, Ellis PM, Ung YC, Goffin JR, Ramchandar K and Darling G: Initial management of small-cell lung cancer (limited- and extensive-stage) and the role of thoracic radiotherapy and first-line chemotherapy: A systematic review. Curr Oncol. 26:e372–e384. 2019.PubMed/NCBI View Article : Google Scholar | |
Bahman F, Elkaissi S, Greish K and Taurin S: Polymeric micelles in management of lung cancer. In: Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Elsevier, pp193-216, 2019. | |
Norouzi M, Amerian M, Amerian M and Atyabi F: Clinical applications of nanomedicine in cancer therapy. Drug Discov Today. 25:107–125. 2020.PubMed/NCBI View Article : Google Scholar | |
Norouzi M, Yathindranath V, Thliveris JA and Miller DW: Salinomycin-loaded iron oxide nanoparticles for glioblastoma therapy. Nanomaterials (Basel). 10(477)2020.PubMed/NCBI View Article : Google Scholar | |
Ricciardi S, Tomao S and de Marinis F: Toxicity of targeted therapy in non-small-cell lung cancer management. Clin Lung Cancer. 10:28–35. 2009.PubMed/NCBI View Article : Google Scholar | |
Su XL, Wang JW, Che H, Wang CF, Jiang H, Lei X, Zhao W, Kuang HX and Wang QH: Clinical application and mechanism of traditional Chinese medicine in treatment of lung cancer. Chin Med J (Engl). 133:2987–2997. 2020.PubMed/NCBI View Article : Google Scholar | |
Paul S, Roy D, Pati S and Sa G: The adroitness of andrographolide as a natural weapon against colorectal cancer. Front Pharmacol. 12(731492)2021.PubMed/NCBI View Article : Google Scholar | |
Lin HH, Tsai CW, Chou FP, Wang CJ, Hsuan SW, Wang CK and Chen JH: Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells. Toxicol Appl Pharmacol. 250:336–345. 2011.PubMed/NCBI View Article : Google Scholar | |
Jiaqi L, Siqing H, qin W, di Z, bei Z and jialin Y: Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction. Phytomedicine. 109(154601)2023.PubMed/NCBI View Article : Google Scholar | |
Neamatallah T, Malebari AM, Alamoudi AJ, Nazreen S, Alam MM, Bin-Melaih HH, Abuzinadah OA, Badr-Eldin SM, Alhassani G, Makki L and Nasrullah MZ: Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells. Drug Deliv. 30(2174209)2023.PubMed/NCBI View Article : Google Scholar | |
Shannon AH, Ruff SM and Pawlik TM: Expert insights on current treatments for hepatocellular carcinoma: Clinical and molecular approaches and bottlenecks to progress. J Hepatocell Carcinoma. 9:1247–1261. 2022.PubMed/NCBI View Article : Google Scholar | |
Rimassa L and Gish GR: HCC in focus: Current developments in the management of hepatocellular carcinoma. Gastroenterol Hepatol (N Y). 14:542–544. 2018. | |
Xi SY and Minuk GY: Role of traditional Chinese medicine in the management of patients with hepatocellular carcinoma. World J Hepatol. 10:799–806. 2018.PubMed/NCBI View Article : Google Scholar | |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.PubMed/NCBI View Article : Google Scholar | |
Forestier-Román IS, López-Rivas A, Sánchez-Vázquez MM, Rohena-Rivera K, Nieves-Burgos G, Ortiz-Zuazaga H, Torres-Ramos CA and Martínez-Ferrer M: Andrographolide induces DNA damage in prostate cancer cells. Oncotarget. 10:1085–1101. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen FZ and Zhao XK: Prostate cancer: Current treatment and prevention strategies. Iran Red Crescent Med J. 15:279–284. 2013.PubMed/NCBI View Article : Google Scholar | |
Malinowski B, Wiciński M, Musiała N, Osowska I and Szostak M: Previous, current, and future pharmacotherapy and diagnosis of prostate cancer-a comprehensive review. Diagnostics (Basel). 9(161)2019.PubMed/NCBI View Article : Google Scholar | |
Jiang J, Slivova V, Valachovicova T, Harvey K and Sliva D: Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol. 24:1093–1099. 2004.PubMed/NCBI | |
Chun JY, Tummala R, Nadiminty N, Lou W, Liu C, Yang J, Evans CP, Zhou Q and Gao AC: Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth. Genes Cancer. 1:868–876. 2010.PubMed/NCBI View Article : Google Scholar | |
Munir AH and Khan MI: Pattern of basic hematological parameters in acute and chronic leukemias. J Med Sci. 27:125–129. 2019. | |
Li X, Wu T, Chen W, Zhang J, Jiang Y, Deng J, Long W, Qin X and Zhou Y: Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM-C1 cells via the regulation of the autophagy-dependent PI3K/AKT/mTOR signaling pathway. Biomed Reports. 20(43)2024.PubMed/NCBI View Article : Google Scholar | |
Hunger SP and Mullighan CG: Acute lymphoblastic leukemia in children. N Engl J Med. 373:1541–1552. 2015.PubMed/NCBI View Article : Google Scholar | |
Samii B, Jafarian A, Rabbani M, Zolfaghari B, Rahgozar S and Pouraboutaleb E: The effects of Astragalus polysaccharides, tragacanthin, and bassorin on methotrexate-resistant acute lymphoblastic leukemia. Res Pharm Sci. 18:381–391. 2023.PubMed/NCBI View Article : Google Scholar | |
Follini E, Marchesini M and Roti G: Strategies to overcome resistance mechanisms in T-cell acute lymphoblastic leukemia. Int J Mol Sci. 20(3021)2019.PubMed/NCBI View Article : Google Scholar | |
Wang YJ, Liao CC, Chen HJ, Hsieh CL and Li TC: The effectiveness of traditional Chinese medicine in treating patients with leukemia. Evid Based Complement Alternat Med. 2016(8394850)2016.PubMed/NCBI View Article : Google Scholar | |
Yang T, Yao S, Zhang X and Guo Y: Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways. Drug Des Devel Ther. 10:1389–1397. 2016.PubMed/NCBI View Article : Google Scholar | |
Cai Q, Zhang W, Sun Y, Xu L, Wang M, Wang X, Wang S and Ni Z: Study on the mechanism of andrographolide activation. Front Neurosci. 16(977376)2022.PubMed/NCBI View Article : Google Scholar | |
Li X, Yuan W, Wu J, Zhen J, Sun Q and Yu M: Andrographolide, a natural anti-inflammatory agent: An update. Front Pharmacol. 13(920435)2022.PubMed/NCBI View Article : Google Scholar | |
Harrington BS and Annunziata CM: NF-κB signaling in ovarian cancer. Cancers (Basel). 11(1182)2019.PubMed/NCBI View Article : Google Scholar | |
Khan H, Ullah H, Castilho PCMF, Gomila AS, D'Onofrio G, Filosa R, Wang F, Nabavi SM, Daglia M, Silva AS, et al: Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit Rev Food Sci Nutr. 60:2790–2800. 2020.PubMed/NCBI View Article : Google Scholar | |
Yu H and Jove R: The STATs of cancer-new molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004.PubMed/NCBI View Article : Google Scholar | |
Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002.PubMed/NCBI View Article : Google Scholar | |
Baldwin AS Jr: Series introduction: The transcription factor NF-kappaB and human disease. J Clin Invest. 107:3–6. 2001.PubMed/NCBI View Article : Google Scholar | |
Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ and Khaled AR: Cytokines in immunogenic cell death: Applications for cancer immunotherapy. Cytokine. 97:123–132. 2017.PubMed/NCBI View Article : Google Scholar | |
Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Ranjbar A, Seyed Saleh SH, Bagherian M, Sharifzadeh SO, Hushmandi K, et al: Regulation of nuclear factor-kappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett. 509:63–80. 2021.PubMed/NCBI View Article : Google Scholar | |
Singh V, Gupta D and Arora R: NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova). 3(e35)2015.PubMed/NCBI View Article : Google Scholar | |
Sun SC: The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017.PubMed/NCBI View Article : Google Scholar | |
Kawai T and Akira S: The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 11:373–384. 2010.PubMed/NCBI View Article : Google Scholar | |
Lin L, Hu X, Zhang H and Hu H: Tertiary lymphoid organs in cancer immunology: Mechanisms and the new strategy for immunotherapy. Front Immunol. 10(1398)2019.PubMed/NCBI View Article : Google Scholar | |
Abramson J and Anderson G: Thymic epithelial cells. Annu Rev Immunol. 35:85–118. 2017.PubMed/NCBI View Article : Google Scholar | |
Serasanambati M and Chilakapati SR: Function of nuclear factor kappa B (NF-kB) in human diseases-a review. South Indian J Biol Sci. 2(368)2016. | |
Ben Hamouda S and Essafi-Benkhadir K: Interplay between signaling pathways and tumor microenvironment components: A paradoxical role in colorectal cancer. Int J Mol Sci. 24(5600)2023.PubMed/NCBI View Article : Google Scholar | |
Sun SC: Non-canonical NF-κB signaling pathway. Cell Res. 21:71–85. 2011.PubMed/NCBI View Article : Google Scholar | |
Jost PJ and Ruland J: Aberrant NF-kappaB signaling in lymphoma: Mechanisms, consequences, and therapeutic implications. Blood. 109:2700–2707. 2007.PubMed/NCBI View Article : Google Scholar | |
Zhang T, Ma C, Zhang Z, Zhang H and Hu H: NF-κB signaling in inflammation and cancer. MedComm (2020). 2:618–653. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther. 2(17023)2017.PubMed/NCBI View Article : Google Scholar | |
Oeckinghaus A and Ghosh S: The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1(a000034)2009.PubMed/NCBI View Article : Google Scholar | |
Guan C, Zhou X, Li H, Ma X and Zhuang J: NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother. 156(113951)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang R, Zhao J, Xu J, Jiao DX, Wang J, Gong ZQ and Jia JH: Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway. Oncol Lett. 14:4305–4310. 2017.PubMed/NCBI View Article : Google Scholar | |
Im NK, Jang WJ, Jeong CH and Jeong GS: Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J Med Food. 17:855–861. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu MY, Li HJ, Yang C, Zang WD, Liu ZD, Zhang L, Li PH, Zhu YJ, Zhao YY, Liu RZ and Gao YZ: Insight into the pharmacological effects of andrographolide in musculoskeletal disorders. Biomed Pharmacother. 146(112583)2022.PubMed/NCBI View Article : Google Scholar | |
Oh A, Pardo M, Rodriguez A, Yu C, Nguyen L, Liang O, Chorzalska A and Dubielecka PM: NF-κB signaling in neoplastic transition from epithelial to mesenchymal phenotype. Cell Commun Signal. 21(291)2023.PubMed/NCBI View Article : Google Scholar | |
Naserian S, Abdelgawad ME, Afshar Bakshloo M, Ha G, Arouche N, Cohen JL, Salomon BL and Uzan G: The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Commun Signal. 18(94)2020.PubMed/NCBI View Article : Google Scholar | |
Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 12(86)2013.PubMed/NCBI View Article : Google Scholar | |
Li Y, He S, Tang J, Ding N, Chu X, Cheng L, Ding X, Liang T, Feng S, Rahman SU, et al: Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-κB/MAPK signaling pathway. Evid Based Complement Alternat Med. 2017(8248142)2017.PubMed/NCBI View Article : Google Scholar | |
Li J, Huang L, He Z, Chen M, Ding Y, Yao Y, Duan Y, Zixuan L, Qi C, Zheng L, et al: Andrographolide suppresses the growth and metastasis of luminal-like breast cancer by inhibiting the NF-κB/miR-21-5p/PDCD4 signaling pathway. Front Cell Dev Biol. 9(643525)2021.PubMed/NCBI View Article : Google Scholar | |
Zou W, Xiao Z, Wen X, Luo J, Chen S, Cheng Z, Xiang D, Hu J and He J: The anti-inflammatory effect of Andrographis paniculata (Burm. f.) Nees on pelvic inflammatory disease in rats through down-regulation of the NF-κB pathway. BMC Complement Altern Med. 16(483)2016.PubMed/NCBI View Article : Google Scholar | |
Wang W, Mani AM and Wu ZH: DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J Cancer Metastasis Treat. 3:45–59. 2017.PubMed/NCBI View Article : Google Scholar | |
Han S, Huang T, Li W, Liu S, Yang W, Shi Q, Li H, Ren J and Hou F: Association between hypoxia-inducible factor-2α (HIF-2α) expression and colorectal cancer and its prognostic role: A systematic analysis. Cell Physiol Biochem. 48:516–527. 2018.PubMed/NCBI View Article : Google Scholar | |
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015.PubMed/NCBI View Article : Google Scholar | |
Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L and Kolb HC: The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxidants Redox Signal. 21:1516–1554. 2014.PubMed/NCBI View Article : Google Scholar | |
Cerychova R and Pavlinkova G: HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). 9(460)2018.PubMed/NCBI View Article : Google Scholar | |
Glaus Garzon JF, Pastrello C, Jurisica I, Hottiger MO, Wenger RH and Borsig L: Tumor cell endogenous HIF-1α activity induces aberrant angiogenesis and interacts with TRAF6 pathway required for colorectal cancer development. Neoplasia. 22:745–758. 2020.PubMed/NCBI View Article : Google Scholar | |
Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhang C, Jiang H and Cheng J: Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth. Onco Targets Ther. 8:427–435. 2015.PubMed/NCBI View Article : Google Scholar | |
Kubaichuk K and Kietzmann T: USP10 contributes to colon carcinogenesis via mTOR/S6K mediated HIF-1α but Not HIF-2α protein synthesis. Cells. 12(1585)2023.PubMed/NCBI View Article : Google Scholar | |
Shi L, Zhang G, Zheng Z, Lu B and Ji L: Andrographolide reduced VEGFA expression in hepatoma cancer cells by inactivating HIF-1α: The involvement of JNK and MTA1/HDCA. Chem Biol Interact. 273:228–236. 2017.PubMed/NCBI View Article : Google Scholar | |
Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR and Bishayee A: Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy. Cells. 9(1451)2020.PubMed/NCBI View Article : Google Scholar | |
Firdous P, Nissar K, Sabba A, Hassan T and Maqbool MT: Application of plasma membrane proteomics to identify cancer biomarkers. In: Ali S, Majid S and Rehman MU (eds). Proteomics: A Promising Approach for Cancer Research. Elsevier, pp287-317, 2023. | |
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J and Wang PY: JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol. 11(1110765)2023.PubMed/NCBI View Article : Google Scholar | |
Huang B, Lang X and Li X: The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol. 12(1023177)2022.PubMed/NCBI View Article : Google Scholar | |
Bao GQ, Shen BY, Pan CP, Zhang YJ, Shi MM and Peng CH: Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer. Toxicol Lett. 222:23–35. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang XR, Jiang ZB, Xu C, Meng WY, Liu P, Zhang YZ, Xie C, Xu JY, Xie YJ, Liang TL, et al: Andrographolide suppresses non-small-cell lung cancer progression through induction of autophagy and antitumor immune response. Pharmacol Res. 179(106198)2022.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Ong CN, Hur GM and Shen HM: Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol. 79:1242–1250. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen SR, Li F, Ding MY, Wang D, Zhao Q and Wang Y, Zhou GC and Wang Y: Andrographolide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorg Med Chem. 26:5053–5061. 2018.PubMed/NCBI View Article : Google Scholar | |
Bousoik E and Montazeri Aliabadi H: ‘Do we know Jack’ About JAK? A closer look at JAK/STAT signaling pathway. Front Oncol. 8(287)2018.PubMed/NCBI View Article : Google Scholar | |
Lemmon MA and Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 2010.PubMed/NCBI View Article : Google Scholar | |
Su YC, Lee WC, Wang CC, Yeh SA, Chen WH and Chen PJ: Targeting PI3K/AKT/mTOR signaling pathway as a radiosensitization in head and neck squamous cell carcinomas. Int J Mol Sci. 23(15749)2022.PubMed/NCBI View Article : Google Scholar | |
Tohkayomatee R, Reabroi S, Tungmunnithum D, Parichatikanond W and Pinthong D: Andrographolide exhibits anticancer activity against breast cancer cells (MCF-7 and MDA-MB-231 cells) through suppressing cell proliferation and inducing cell apoptosis via inactivation of ER-α receptor and PI3K/AKT/mTOR signaling. Molecules. 27(3544)2022.PubMed/NCBI View Article : Google Scholar | |
Weerackoon N, Gunawardhana KL and Mani A: Wnt signaling cascades and their role in coronary artery health and disease. J Cell Signal. 2:52–62. 2021.PubMed/NCBI View Article : Google Scholar | |
Reyes M, Flores T, Betancur D, Peña-Oyarzún D and Torres VA: Wnt/β-catenin signaling in oral carcinogenesis. Int J Mol Sci. 21(4682)2020.PubMed/NCBI View Article : Google Scholar | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009.PubMed/NCBI View Article : Google Scholar | |
MacDonald BT and He X: Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol. 4(a007880)2012.PubMed/NCBI View Article : Google Scholar | |
Steinhart Z and Angers S: Wnt signaling in development and tissue homeostasis. Development. 145(dev146589)2018.PubMed/NCBI View Article : Google Scholar | |
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S and Paul MK: Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today. 27:82–101. 2022.PubMed/NCBI View Article : Google Scholar | |
Jackstadt R, Hodder MC and Sansom OJ: WNT and β-catenin in cancer: Genes and therapy. Annu Rev Cancer Biol. 4:177–196. 2020. | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7(3)2022.PubMed/NCBI View Article : Google Scholar | |
Cruciat CM and Niehrs C: Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 5(a015081)2013.PubMed/NCBI View Article : Google Scholar | |
Skronska-Wasek W, Mutze K, Baarsma HA, Bracke KR, Alsafadi HN, Lehmann M, Costa R, Stornaiuolo M, Novellino E, Brusselle GG, et al: Reduced frizzled receptor 4 expression prevents WNT/β-catenin-driven alveolar lung repair in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 196:172–185. 2017.PubMed/NCBI View Article : Google Scholar | |
Sharma P, Shimura T, Banwait JK and Goel A: Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer. Carcinogenesis. 41:1385–1394. 2020.PubMed/NCBI View Article : Google Scholar | |
Rubinfeld H and Seger R: The ERK cascade: A prototype of MAPK signaling. Mol Biotechnol. 31:151–174. 2005.PubMed/NCBI View Article : Google Scholar | |
Karnoub AE and Weinberg RA: Ras oncogenes: Split personalities. Nat Rev Mol Cell Biol. 9:517–531. 2008.PubMed/NCBI View Article : Google Scholar | |
Zlobin A, Bloodworth JC and Osipo C: Mitogen-activated protein kinase (MAPK) signaling. In: Badve S, Kumar G (eds). Predictive Biomarkers in Oncology. Springer, Cham, pp213-221, 2019. | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI View Article : Google Scholar | |
Dhillon AS, Hagan S, Rath O and Kolch W: MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290. 2007.PubMed/NCBI View Article : Google Scholar | |
Ballestín A, Armocida D, Ribecco V and Seano G: Peritumoral brain zone in glioblastoma: Biological, clinical and mechanical features. Front Immunol. 15(1347877)2024.PubMed/NCBI View Article : Google Scholar | |
Yang SL, Kuo FH, Chen PN, Hsieh YH, Yu NY, Yang WE, Hsieh MJ and Yang SF: Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression. Oncotarget. 8:105860–105872. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Yang C, Feldman MJ, Wang H, Pang Y, Maggio DM, Zhu D, Nesvick CL, Dmitriev P, Bullova P, et al: Vorinostat suppresses hypoxia signaling by modulating nuclear translocation of hypoxia inducible factor 1 alpha. Oncotarget. 8:56110–56125. 2017.PubMed/NCBI View Article : Google Scholar |