1
|
Zhang Y and Zhang Z: The history and
advances in cancer immunotherapy: Understanding the characteristics
of tumor-infiltrating immune cells and their therapeutic
implications. Cell Mol Immunol. 17:807–821. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Pahlavanneshan S, Sayadmanesh A,
Ebrahimiyan H and Basiri M: Toll-like receptor-based strategies for
cancer immunotherapy. J Immunol Res. 2021(9912188)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Chen X, Zhang Y and Fu Y: The critical
role of Toll-like receptor-mediated signaling in cancer
immunotherapy. Med Drug Disc. 14(100122)2022.
|
4
|
Spyvee M, Hawkins LD and Ishizaka ST:
Chapter 12 - Modulators of Toll-Like Receptor (TLR) Signaling. In:
Annual Reports in Medicinal Chemistry. Vol 45. Academic Press,
pp191-207, 2010.
|
5
|
Ryu KA, Stutts L, Tom JK, Mancini RJ and
Esser-Kahn AP: Stimulation of innate immune cells by
light-activated TLR7/8 agonists. J Am Chem Soc. 136:10823–10825.
2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Bhagchandani S, Johnson JA and Irvine DJ:
Evolution of Toll-like receptor 7/8 agonist therapeutics and their
delivery approaches: From antiviral formulations to vaccine
adjuvants. Adv Drug Deliv Rev. 175(113803)2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Tie Y, Tang F, Wei YQ and Wei XW:
Immunosuppressive cells in cancer: Mechanisms and potential
therapeutic targets. J Hematol Oncol. 15(61)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Ye J, Mills BN, Qin SS, Garrett-Larsen J,
Murphy JD, Uccello TP, Han BJ, Vrooman TG, Johnston CJ, Lord EM,
Belt BA, et al: Toll-like receptor 7/8 agonist R848 alters the
immune tumor microenvironment and enhances SBRT-induced antitumor
efficacy in murine models of pancreatic cancer. J Immunother
Cancer. 10(e004784)2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Mottas I, Bekdemir A, Cereghetti A,
Spagnuolo L, Yang YS, Müller M, Irvine DJ, Stellacci F and Bourquin
C: Amphiphilic nanoparticle delivery enhances the anticancer
efficacy of a TLR7 ligand via local immune activation.
Biomaterials. 190:111–120. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Wang DR, Wu XL and Sun YL: Therapeutic
targets and biomarkers of tumor immunotherapy: Response versus
non-response. Sig Transduct Target Ther. 7(331)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Leśniak M, Lipniarska J, Majka P, Kopyt W,
Lejman M and Zawitkowska J: The Role of TRL7/8 agonists in cancer
therapy, with special emphasis on hematologic malignancies.
Vaccines (Basel). 11(277)2023.PubMed/NCBI View Article : Google Scholar
|
12
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song
Y, Wan D and Yu J: Targeting toll-like receptor 7/8 for
immunotherapy: Recent advances and prospectives. Biomark Res.
10(89)2022.PubMed/NCBI View Article : Google Scholar
|
13
|
Karnik I, Her Z, Neo SH, Liu WN and Chen
Q: Emerging preclinical applications of humanized mouse models in
the discovery and validation of novel immunotherapeutics and their
mechanisms of action for improved cancer treatment. Pharmaceutics.
15(1600)2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Deza G, Martin-Ezquerra G, Curto-Barredo
L, García JV and Pujol RM: Successful treatment of hypertrophic
herpes simplex genitalis in an HIV-infected patient with topical
Imiquimod. J Dermatol. 42:1176–1178. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Miller RL, Imbertson LM, Reiter MJ and
Gerster JF: Treatment of primary herpes simplex virus infection in
guinea pigs by imiquimod. Antiviral Res. 44:31–42. 1999.PubMed/NCBI View Article : Google Scholar
|
16
|
Schacker TW, Conant M, Thoming C, Stanczak
T, Wang Z and Smith M: Imiquimod 5-Percent cream does not alter the
natural history of recurrent herpes genitalis: A phase II,
Randomized, double-blind, placebo-controlled study. Antimicrob
Agents Chemother. 46:3243–3248. 2002.PubMed/NCBI View Article : Google Scholar
|
17
|
Winters U, Daayana S, Lear JT, Tomlinson
AE, Elkord E, Stern PL and Kitchener HC: Clinical and immunologic
results of a phase II trial of sequential imiquimod and
photodynamic therapy for vulval intraepithelial neoplasia. Clin
Cancer Res. 14:5292–5299. 2008.PubMed/NCBI View Article : Google Scholar
|
18
|
Wouters T, Hendriks N, Koeneman M, Kruse
AJ, van de Sande A, van Beekhuizen HJ, Gerestein KG, Bekkers RLM
and Piek JMJ: Systemic adverse events in Imiquimod use for cervical
intraepithelial neoplasia-A case series. Case Rep Womens Health.
21(e00105)2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Lebwohl M, Dinehart S, Whiting D, Lee PK,
Tawfik N, Jorizzo J, Lee JH and Fox TL: Imiquimod 5% cream for the
treatment of actinic keratosis: Results from two phase III,
randomized, double-blind, parallel group, vehicle-controlled
trials. J Am Acad Dermatol. 50:714–721. 2004.PubMed/NCBI View Article : Google Scholar
|
20
|
Geisse J, Caro I, Lindholm J, Golitz L,
Stampone P and Owens M: Imiquimod 5% cream for the treatment of
superficial basal cell carcinoma: Results from two phase III,
randomized, vehicle-controlled studies. J Am Acad Dermatol.
50:722–733. 2004.PubMed/NCBI View Article : Google Scholar
|
21
|
Ackerman SE, Gonzalez JC, Gregorio JD,
Paik JC, Hartmann FJ, Kenkel JA, Lee A, Luo A, Pearson CI, Nguyen
ML, et al: Abstract 1559: TLR7/8 immune-stimulating antibody
conjugates elicit robust myeloid activation leading to enhanced
effector function and anti-tumorimmunity in pre-clinical models.
Cancer Res. 79 (13 Suppl)(S1559)2019.
|
22
|
Ackerman SE, Pearson CI, Gregorio JD,
Gonzalez JC, Kenkel JA, Hartmann FJ, Luo A, Ho PY, LeBlanc H, Blum
LK, et al: Immune-stimulating antibody conjugates elicit robust
myeloid activation and durable antitumor immunity. Nat Cancer.
2:18–33. 2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Dudek AZ, Yunis C, Harrison LI, Kumar S,
Hawkinson R, Cooley S, Vasilakos JP, Gorski KS and Miller JS: First
in human phase I trial of 852A, a novel systemic toll-like receptor
7 agonist, to activate innate immune responses in patients with
advanced cancer. Clin Cancer Res. 13:7119–7125. 2007.PubMed/NCBI View Article : Google Scholar
|
24
|
Hänel G, Angerer C, Petry K, Lichtenegger
FS and Subklewe M: Blood DCs activated with R848 and poly (I: C)
induce antigen-specific immune responses against viral and
tumor-associated antigens. Cancer Immunol Immunother. 71:1705–1718.
2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Anfray C, Mainini F, Digifico E, Maeda A,
Sironi M, Erreni M, Anselmo A, Ummarino A, Gandoy S, Expósito F, et
al: Intratumoral combination therapy with poly(I:C) and Resiquimod
synergistically triggers tumor-associated macrophages for effective
systemic antitumoral immunity. J Immunother Cancer.
9(e002408)2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Pearson FE, Chang K, Minoda Y, Rojas IML,
Haigh OL, Daraj G, Tullett KM and Radford KJ: Activation of human
CD141(+) and CD1c(+) dendritic cells in vivo with combined TLR3 and
TLR7/8 ligation. Immunol Cell Biol. 96:390–400. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Sajadian A, Tabarraei A, Soleimanjahi H,
Fotouhi F, Gorji A and Ghaemi A: Comparing the effect of Toll-like
receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch
Virol. 159:1951–1960. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Gierlich P, Lex V, Technau A, Keupp A,
Morper L, Glunz A, Sennholz H, Rachor J, Sauer S, Marcu A, et al:
Prostaglandin E2 in a TLR3- and 7/8-agonist-based DC maturation
cocktail generates mature, cytokine-producing, migratory DCs but
impairs antigen cross-presentation to CD8(+) T-cells. Cancer
Immunol Immunother. 69:1029–1042. 2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Caisova V, Uher O, Nedbalova P, Jochmanova
I, Kvardova K, Masakova K, Krejcova G, Padoukova L, Chmelar J,
Kopecky J and Ženka J: Effective cancer immunotherapy based on the
combination of TLR agonists with stimulation of phagocytosis. Int
Immunopharmacol. 59:86–96. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu
Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin
resistance in colorectal cancer via directing the myeloid-derived
suppressor cells to tumoricidal M1-macrophages. Cancer Lett.
469:173–185. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Liu C, Han C and Liu J: The role of
toll-like receptors in oncotherapy. Oncol Res. 27:965–978.
2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Cho JH, Lee HJ, Ko HJ, Yoon BI, Choe J,
Kim KC, Hahn TW, Han JA, Choi SS, Jung YM, et al: The TLR7 agonist
Imiquimod induces anti-cancer effects via autophagic cell death and
enhances anti-tumoral and systemic immunity during radiotherapy for
melanoma. Oncotarget. 8:24932–24948. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen Q, Xu L, Liang C, Wang C, Peng R and
Liu Z: Photothermal therapy with immune-adjuvant nanoparticles
together with checkpoint blockade for effective cancer
immunotherapy. Nat Commun. 7(13193)2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Lin W, Li C, Xu N, Watanabe M, Xue R, Xu
A, Araki M, Sun R, Liu C, Nasu Y and Huang P: Dual-Functional PLGA
nanoparticles co-loaded with indocyanine green and resiquimod for
prostate cancer treatment. Int J Nanomed. 16:2775–2787.
2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhang H, Tang WL, Kheirolomoom A, Fite BZ,
Wu B, Lau K, Baikoghli M, Raie MN, Tumbale SK, Foiret J, et al:
Development of thermosensitive resiquimod-loaded liposomes for
enhanced cancer immunotherapy. J Control Release. 330:1080–1094.
2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y
and Pu K: Second near-infrared photothermal semiconducting polymer
nanoadjuvant for enhanced cancer immunotherapy. Adv Mater.
33(e2003458)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Noman MZ, Parpal S, Van Moer K, Xiao ML,
Yu Y, Viklund J, De Milito A, Hasmim M, Andersson M, Amaravadi RK,
et al: Inhibition of Vps34 reprograms cold into hot inflamed tumors
and improves anti-PD-1/PD-L1 immunotherapy. Sci Adv.
6(eaax7881)2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Shakhnovich V, Meibohm B, Rosenberg A,
Kierzek AM, Hasenkamp R, Funk RS, Thalhauser CJ, van der Graaf PH,
Wang YC and Hamuro L: Immunogenicity in clinical practice and drug
development: When is it significant? Clin Transl Sci. 13:219–223.
2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhang R, Jia M, Lv H, Li M, Ding G, Cheng
G and Li J: Assembling Au8 clusters on surfaces of bifunctional
nanoimmunomodulators for synergistically enhanced low dose
radiotherapy of metastatic tumor. J Nanobiotechnology.
22(20)2024.PubMed/NCBI View Article : Google Scholar
|
40
|
Zahm CD, Colluru VT, McIlwain SJ, Ong IM
and McNeel DG: TLR stimulation during T-cell activation lowers PD-1
expression on CD8(+) T-cells. Cancer Immunol Res. 6:1364–1374.
2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Costa Svedman F, Jalsenius M, Höiom V,
Grozman V, Bergqvist M, Söderdahl F, Eriksson H, Rotstein S, Ny L,
Ascierto PA, et al: Plasma thymidine kinase activity as a novel
biomarker in metastatic melanoma patients treated with immune
checkpoint inhibitors. Cancers (Basel). 14(702)2022.PubMed/NCBI View Article : Google Scholar
|
42
|
Rizzo A, Ricci AD and Brandi G: Pd-L1,
TMB, MSI, and other predictors of response to immune checkpoint
inhibitors in biliary tract cancer. Cancers (Basel).
13(553)2021.PubMed/NCBI View Article : Google Scholar
|
43
|
Shen X and Zhao B: Efficacy of PD-1 or
PD-L1 inhibitors and PD-L1 expression status in cancer:
Meta-analysis. BMJ. 362(k3529)2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33.
2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Wang X, Piantadosi S, Le-Rademacher J and
Mandrekar SJ: Statistical considerations for subgroup analyses. J
Thorac Oncol. 16:375–380. 2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Riley RS, June CH, Langer R and Mitchell
MJ: Delivery technologies for cancer immunotherapy. Nat Rev Drug
Discov. 18:175–196. 2019.PubMed/NCBI View Article : Google Scholar
|
47
|
Jin SM, Lee SN, Kim JE, Yoo YJ, Song C,
Shin HS, Phuengkham H, Lee CH, Um SH and Lim YT: Overcoming
chemoimmunotherapy-induced immunosuppression by assemblable and
depot forming immune modulating nanosuspension. Adv Sci (Weinh).
8(2102043)2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Fang X, Lan H, Jin K, Gong D and Qian J:
Nanovaccines for cancer prevention and immunotherapy: An update
review. Cancers (Basel). 14(3842)2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Wolchok JD, Kluger H, Callahan MK, Postow
MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K,
et al: Nivolumab plus ipilimumab in advanced melanoma. N Engl J
Med. 369:122–133. 2013.PubMed/NCBI View Article : Google Scholar
|
50
|
Muraoka D, Seo N, Hayashi T, Tahara Y,
Fujii K, Tawara I, Miyahara Y, Okamori K, Yagita H, Imoto S, et al:
Antigen delivery targeted to tumor-associated macrophages overcomes
tumor immune resistance. J Clin Invest. 129:1278–1294.
2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Garrido-Martin EM, Mellows TWP, Clarke J,
Ganesan AP, Wood O, Cazaly A, Seumois G, Chee SJ, Alzetani A, King
EV, et al: M1hot tumor-associated macrophages boost
tissue-resident memory T cells infiltration and survival in human
lung cancer. J Immunother Cancer. 8(e000778)2020.PubMed/NCBI View Article : Google Scholar
|