1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI View Article : Google Scholar
|
2
|
Brufsky A, Kwan ML, Sandin R,
Stergiopoulos S, Karanth S, Cha-Silva AS, Makari D and Goyal RK:
Trends in HR+ metastatic breast cancer survival before and after
CDK4/6 inhibitor introduction in the United States: A SEER registry
analysis of patients with HER2- and HER2+ metastatic breast cancer.
Breast Cancer Res Treat. 208:223–235. 2024.PubMed/NCBI View Article : Google Scholar
|
3
|
Sotirov S and Dimitrov I: Tumor-derived
antigenic peptides as potential cancer vaccines. Int J Mol Sci.
25(4934)2024.PubMed/NCBI View Article : Google Scholar
|
4
|
Curigliano G, Bagnardi V, Ghioni M,
Louahed J, Brichard V, Lehmann FF, Marra A, Trapani D, Criscitiello
C and Viale G: Expression of tumor-associated antigens in breast
cancer subtypes. Breast. 49:202–209. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Liu Z, Yang X, Duan C, Li J, Tong R, Fan
Y, Feng J, Cao R, Zhong W, Feng X, et al: Identification and
characterization of mammaglobin-A epitope in heterogenous breast
cancers for enhancing tumor-targeting therapy. Signal Transduct
Target Ther. 5(82)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Milosevic B, Stojanovic B, Cvetkovic A,
Jovanovic I, Spasic M, Stojanovic MD, Stankovic V, Sekulic M,
Stojanovic BS, Zdravkovic N, et al: The enigma of mammaglobin:
Redefining the biomarker paradigm in breast carcinoma. Int J Mol
Sci. 24(13407)2023.PubMed/NCBI View Article : Google Scholar
|
7
|
Li G, Zhang J, Jin K, He K, Wang H, Lu H
and Teng L: Human mammaglobin: A superior marker for
reverse-transcriptase PCR in detecting circulating tumor cells in
breast cancer patients. Biomark Med. 5:249–260. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
O'Brien N, Maguire TM, O'Donovan N, Lynch
N, Hill AD, McDermott E, O'Higgins N and Duffy MJ: Mammaglobin a: A
promising marker for breast cancer. Clin Chem. 48:1362–1364.
2002.PubMed/NCBI
|
9
|
Tiriveedhi V, Tucker N, Herndon J, Li L,
Sturmoski M, Ellis M, Ma C, Naughton M, Lockhart AC, Gao F, et al:
Safety and preliminary evidence of biologic efficacy of a
mammaglobin-a DNA vaccine in patients with stable metastatic breast
cancer. Clin Cancer Res. 20:5964–5975. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Jaramillo A, Narayanan K, Campbell LG,
Benshoff ND, Lybarger L, Hansen TH, Fleming TP, Dietz JR and
Mohanakumar T: Recognition of HLA-A2-restricted
mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from
breast cancer patients. Breast Cancer Res Treat. 88:29–41.
2004.PubMed/NCBI View Article : Google Scholar
|
11
|
Babaer D, Amara S, McAdory BS, Johnson O,
Myles EL, Zent R, Rathmell JC and Tiriveedhi V:
Oligodeoxynucleotides ODN 2006 and M362 exert potent adjuvant
effect through TLR-9/-6 synergy to exaggerate mammaglobin-A peptide
specific cytotoxic CD8+T lymphocyte responses against breast cancer
cells. Cancers (Basel). 11(672)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Babaer D, Zheng M, Ivy MT, Zent R and
Tiriveedhi V: Methylselenol producing selenocompounds enhance the
efficiency of mammaglobin-A peptide vaccination against breast
cancer cells. Oncol Lett. 18:6891–6898. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Nelde A, Rammensee HG and Walz JS: The
peptide vaccine of the future. Mol Cell Proteomics.
20(100022)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Xie N, Shen G, Gao W, Huang Z, Huang C and
Fu L: Neoantigens: Promising targets for cancer therapy. Signal
Transduct Target Ther. 8(9)2023.PubMed/NCBI View Article : Google Scholar
|
15
|
Nguyen AT, Szeto C and Gras S: The pockets
guide to HLA class I molecules. Biochem Soc Trans. 49:2319–2331.
2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Moynihan KD, Holden RL, Mehta NK, Wang C,
Karver MR, Dinter J, Liang S, Abraham W, Melo MB, Zhang AQ, et al:
Enhancement of peptide vaccine immunogenicity by increasing
lymphatic drainage and boosting serum stability. Cancer Immunol
Res. 6:1025–1038. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Ding Y, Li Z, Jaklenec A and Hu Q: Vaccine
delivery systems toward lymph nodes. Adv Drug Deliv Rev.
179(113914)2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Kim CG, Kye YC and Yun CH: The role of
nanovaccine in cross-presentation of antigen-presenting cells for
the activation of CD8(+) T cell responses. Pharmaceutics.
11(612)2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Yang J, Luo Y, Shibu MA, Toth I and
Skwarczynskia M: Cell-penetrating peptides: Efficient vectors for
vaccine delivery. Curr Drug Deliv. 16:430–443. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Tiriveedhi V and Butko P: A fluorescence
spectroscopy study on the interactions of the TAT-PTD peptide with
model lipid membranes. Biochemistry. 46:3888–3895. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Tiriveedhi V, Miller M, Butko P and Li M:
Autonomous transmembrane segment S4 of the voltage sensor domain
partitions into the lipid membrane. Biochim Biophys Acta.
1818:1698–1705. 2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Bossi G, Gerry AB, Paston SJ, Sutton DH,
Hassan NJ and Jakobsen BK: Examining the presentation of
tumor-associated antigens on peptide-pulsed T2 cells.
Oncoimmunology. 2(e26840)2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Tiriveedhi V, Ivy MT, Myles EL, Zent R,
Rathmell JC and Titze J: Ex vivo high salt activated tumor-primed
CD4+T lymphocytes exert a potent anti-cancer response. Cancers
(Basel). 13(1690)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Luft T, Rizkalla M, Tai TY, Chen Q,
MacFarlan RI, Davis ID, Maraskovsky E and Cebon J: Exogenous
peptides presented by transporter associated with antigen
processing (TAP)-deficient and TAP-competent cells: Intracellular
loading and kinetics of presentation. J Immunol. 167:2529–2537.
2001.PubMed/NCBI View Article : Google Scholar
|
26
|
Zahedipour F, Jamialahmadi K, Zamani P and
Jaafari MR: Improving the efficacy of peptide vaccines in cancer
immunotherapy. Int Immunopharmacol. 123(110721)2023.PubMed/NCBI View Article : Google Scholar
|
27
|
Stephens AJ, Burgess-Brown NA and Jiang S:
Beyond just peptide antigens: The complex world of peptide-based
cancer vaccines. Front Immunol. 12(696791)2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Bottens RA and Yamada T: Cell-Penetrating
peptides (CPPs) as therapeutic and diagnostic agents for cancer.
Cancers (Basel). 14(5546)2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli
S, Dabiri M and Bolhassani A: Cell penetrating peptide: A potent
delivery system in vaccine development. Front Pharmacol.
13(1072685)2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Buonaguro L and Tagliamonte M:
Peptide-based vaccine for cancer therapies. Front Immunol.
14(1210044)2023.PubMed/NCBI View Article : Google Scholar
|
31
|
Wu X, Li T, Jiang R, Yang X, Guo H and
Yang R: Targeting MHC-I molecules for cancer: Function, mechanism,
and therapeutic prospects. Mol Cancer. 22(194)2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Backlund CM, Holden RL, Moynihan KD,
Garafola D, Farquhar C, Mehta NK, Maiorino L, Pham S, Iorgulescu
JB, Reardon DA, et al: Cell-penetrating peptides enhance peptide
vaccine accumulation and persistence in lymph nodes to drive
immunogenicity. Proc Natl Acad Sci USA.
119(e2204078119)2022.PubMed/NCBI View Article : Google Scholar
|