1
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Jiang JJ, Li YQ and Gu YY: Clinical and
histopathological features of immune checkpoint inhibitor-related
myositis in patients with advanced non-small cell lung cancer.
Zhonghua Jie He He Hu Xi Za Zhi. 45:47–52. 2022.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
3
|
Duma N, Santana-Davila R and Molina JR:
Non-small cell lung cancer: Epidemiology, screening, diagnosis, and
treatmen. Mayo Clin Proc. 94:1623–1640. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Broderick SR: Adjuvant and neoadjuvant
immunotherapy in non-small cell lung cancer. Thorac Surg Clin.
30:215–220. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Hussain MR, Hoessli DC and Fang M:
N-acetylgalactosaminyltransferases in cancer. Oncotarget.
7:54067–54081. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Hollingsworth MA and Swanson BJ: Mucins in
cancer: Protection and control of the cell surface. Nat Rev Cancer.
4:45–60. 2004.PubMed/NCBI View
Article : Google Scholar
|
7
|
Ohyama C: Glycosylation in bladder cancer.
Int J Clin Oncol. 13:308–313. 2008.PubMed/NCBI View Article : Google Scholar
|
8
|
Langbecker D and Janda M: Systematic
review of interventions to improve the provision of information for
adults with primary brain tumors and their caregivers. Front Oncol.
5(1)2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Stowell SR, Ju T and Cummings RD: Protein
glycosylation in cancer. Annu Rev Pathol. 10:473–510.
2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Peng C, Togayachi A, Kwon YD, Xie C, Wu G,
Zou X, Sato T, Ito H, Tachibana K, Kubota T, et al: Identification
of a novel human UDP-GalNAc transferase with unique catalytic
activity and expression profile. Biochem Biophys Res Commun.
402:680–686. 2010.PubMed/NCBI View Article : Google Scholar
|
11
|
Gomes J, Mereiter S, Magalhães A and Reis
CA: Early GalNAc O-glycosylation: Pushing the tumor boundaries.
Cancer Cell. 32:544–545. 2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang W, Sun R, Zeng L, Chen Y, Zhang N,
Cao S, Deng S, Meng X and Yang S: GALNT2 promotes cell
proliferation, migration, and invasion by activating the
Notch/Hes1-PTEN-PI3K/Akt signaling pathway in lung adenocarcinoma.
Life Sci. 276(119439)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Yu Y, Wang Z, Zheng Q and Li J: GALNT2/14
overexpression correlate with prognosis and methylation: Potential
therapeutic targets for lung adenocarcinoma. Gene.
790(145689)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Hu Q, Tian T, Leng Y, Tang Y, Chen S, Lv
Y, Liang J, Liu Y, Liu T, Shen L and Dong X: The O-glycosylating
enzyme GALNT2 acts as an oncogenic driver in non-small cell lung
cancer. Cell Mol Biol Lett. 27(71)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Alghamdi RA and Al-Zahrani MH: Integrated
bioinformatics analyses identifying key transcriptomes correlated
with prognosis and immune infiltrations in lung squamous cell
carcinoma. Saudi J Biol Sci. 30(103596)2023.PubMed/NCBI View Article : Google Scholar
|
16
|
Dong X, Leng Y, Tian T, Hu Q, Chen S, Liu
Y and Shen L: GALNT2, an O-glycosylating enzyme, is a critical
regulator of radioresistance of non-small cell lung cancer:
Evidence from an integrated multi-omics analysis. Cell Biol
Toxicol. 39:3159–3174. 2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Baumgart A, Mazur PK, Anton M, Rudelius M,
Schwamborn K, Feuchtinger A, Behnke K, Walch A, Braren R, Peschel
C, et al: Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven
murine non-small cell lung cancer model. Oncogene. 34:578–588.
2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Zheng Y, de la Cruz CC, Sayles LC,
Alleyne-Chin C, Vaka D, Knaak TD, Bigos M, Xu Y, Hoang CD, Shrager
JB, et al: A rare population of CD24(+)ITGB4(+)Notch(hi) cells
drives tumor propagation in NSCLC and requires Notch3 for
self-renewal. Cancer Cell. 24:59–74. 2013.PubMed/NCBI View Article : Google Scholar
|
19
|
Yuan X, Wu H, Xu H, Han N, Chu Q, Yu S,
Chen Y and Wu K: Meta-analysis reveals the correlation of Notch
signaling with non-small cell lung cancer progression and
prognosis. Sci Rep. 5(10338)2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Zheng W, Jiang C and Li R: Integrin and
gene network analysis reveals that ITGA5 and ITGB1 are prognostic
in non-small-cell lung cancer. Onco Targets Ther. 9:2317–2327.
2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhang YL, Wang RC, Cheng K, Ring BZ and Su
L: Roles of Rap1 signaling in tumor cell migration and invasion.
Cancer Biol Med. 14:90–99. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Girnita L, Worrall C, Takahashi S,
Seregard S and Girnita A: Something old, something new and
something borrowed: emerging paradigm of insulin-like growth factor
type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci.
71:2403–2427. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Alfaro-Arnedo E, López IP, Piñeiro-Hermida
S, Canalejo M, Gotera C, Sola JJ, Roncero A, Peces-Barba G,
Ruíz-Martínez C and Pichel JG: IGF1R acts as a cancer-promoting
factor in the tumor microenvironment facilitating lung metastasis
implantation and progression. Oncogene. 41:3625–3639.
2022.PubMed/NCBI View Article : Google Scholar
|
24
|
Luo D, Fang M, Shao L, Wang J, Liang Y,
Chen M, Gui X, Yan J, Wang W, Yu L, et al: The EMT-related genes
GALNT3 and OAS1 are associated with immune cell infiltration and
poor prognosis in lung adenocarcinoma. Front Biosci (Landmark Ed).
28(271)2023.PubMed/NCBI View Article : Google Scholar
|
25
|
Pucci M, Duca M, Malagolini N and
Dall'Olio F: Glycosyl-transferases in cancer: Prognostic biomarkers
of survival in patient cohorts and impact on malignancy in
experimental models. Cancers (Basel). 14(2128)2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Li Y, Zhao J, Zhang W, Wang A, Jiao M, Cai
X, Zhu J, Liu Z and Huang JA: LINC02535/miR-30a-5p/GALNT3 axis
contributes to lung adenocarcinoma progression via the NF-κB
signaling pathway. Cell Cycle. 21:2455–2470. 2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Vojta A, Samaržija I, Bočkor L and Zoldoš
V: Glyco-genes change expression in cancer through aberrant
methylation. Biochim Biophys Acta. 1860:1776–1785. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Chen W, Zhang Z, Zhang S, Zhu P, Ko JK and
Yung KK: MUC1: Structure, function, and clinic application in
epithelial cancers. Int J Mol Sci. 22(6567)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Supruniuk K, Czarnomysy R, Muszyńska A and
Radziejewska I: Combined action of anti-MUC1 monoclonal antibody
and pyrazole-platinum(II) complexes reveals higher effectiveness
towards apoptotic response in comparison with monotherapy in AGS
gastric cancer cells. Pharmaceutics. 13(968)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Hagiwara M, Fushimi A, Yamashita N,
Bhattacharya A, Rajabi H, Long MD, Yasumizu Y, Oya M, Liu S and
Kufe D: MUC1-C activates the PBAF chromatin remodeling complex in
integrating redox balance with progression of human prostate cancer
stem cells. Oncogene. 40:4930–4940. 2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Ahmad R, Raina D, Trivedi V, Ren J, Rajabi
H, Kharbanda S and Kufe D: MUC1 oncoprotein activates the IkappaB
kinase beta complex and constitutive NF-kappaB signalling. Nat Cell
Biol. 9:1419–1427. 2007.PubMed/NCBI View
Article : Google Scholar
|
32
|
Park MS, Yang AY, Lee JE, Kim SK, Roe JS,
Park MS, Oh MJ, An HJ and Kim MY: GALNT3 suppresses lung cancer by
inhibiting myeloid-derived suppressor cell infiltration and
angiogenesis in a TNFR and c-MET pathway-dependent manner. Cancer
Lett. 521:294–307, Aug 17. 2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
33
|
Xing L, Hong X, Chang L, Ren P and Zhang
H: miR-365b regulates the development of non-small cell lung cancer
via GALNT4. Exp Ther Med. 20:1637–1643. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Chen X, Yu L, Zhang H and Jin H:
Identification of new prognostic genes and construction of a
prognostic model for lung adenocarcinoma. Diagnostics (Basel).
13(1914)2023.PubMed/NCBI View Article : Google Scholar
|
35
|
Song J, Liu W, Wang J, Hao J, Wang Y, You
X, Du X, Zhou Y, Ben J, Zhang X, et al: GALNT6 promotes invasion
and metastasis of human lung adenocarcinoma cells through
O-glycosylating chaperone protein GRP78. Cell Death Dis.
11(352)2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhang L, Gallup M, Zlock L, Chen YT,
Finkbeiner WE and McNamara NA: Pivotal role of MUC1 glycosylation
by cigarette smoke in modulating disruption of airway adherens
junctions in vitro. J Pathol. 234:60–73. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Matsumoto Y, Zhang Q, Akita K, Nakada H,
Hamamura K, Tokuda N, Tsuchida A, Matsubara T, Hori T, Okajima T,
et al: pp-GalNAc-T13 induces high metastatic potential of murine
Lewis lung cancer by generating trimeric Tn antigen. Biochem
Biophys Res Commun. 419:7–13. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang Q and Furukawa K, Chen HH,
Sakakibara T, Urano T and Furukawa K: Metastatic potential of mouse
Lewis lung cancer cells is regulated via ganglioside GM1 by
modulating the matrix metalloprotease-9 localization in lipid
rafts. J Biol Chem. 281:18145–18155. 2006.PubMed/NCBI View Article : Google Scholar
|
39
|
Matsumoto Y, Zhang Q, Akita K, Nakada H,
Hamamura K, Tsuchida A, Okajima T and Furukawa K, Urano T and
Furukawa K: Trimeric Tn antigen on syndecan 1 produced by
ppGalNAc-T13 enhances cancer metastasis via a complex formation
with integrin α5β1 and matrix metalloproteinase 9. J Biol Chem.
288:24264–24276. 2013.PubMed/NCBI View Article : Google Scholar
|
40
|
Nogimori K, Hori T, Kawaguchi K, Fukui T,
Mii S, Nakada H, Matsumoto Y, Yamauchi Y, Takahashi M, Furukawa K,
et al: Increased expression levels of ppGalNAc-T13 in lung cancers:
Significance in the prognostic diagnosis. Int J Oncol.
49:1369–1376. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Wagner KW, Punnoose EA, Januario T,
Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF,
Totpal K, et al: Death-receptor O-glycosylation controls tumor-cell
sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med.
13:1070–1077. 2007.PubMed/NCBI View
Article : Google Scholar
|
42
|
Stern HM, Padilla M, Wagner K, Amler L and
Ashkenazi A: Development of immunohistochemistry assays to assess
GALNT14 and FUT3/6 in clinical trials of dulanermin and drozitumab.
Clin Cancer Res. 16:1587–1596. 2010.PubMed/NCBI View Article : Google Scholar
|
43
|
Lee ES, Son DS, Kim SH, Lee J, Jo J, Han
J, Kim H, Lee HJ, Choi HY, Jung Y, et al: Prediction of
recurrence-free survival in postoperative non-small cell lung
cancer patients by using an integrated model of clinical
information and gene expression. Clin Cancer Res. 14:7397–7404.
2008.PubMed/NCBI View Article : Google Scholar
|
44
|
Kwon OS, Lee H, Kong HJ, Kwon EJ, Park JE,
Lee W, Kang S, Kim M, Kim W and Cha HJ: Connectivity map-based drug
repositioning of bortezomib to reverse the metastatic effect of
GALNT14 in lung cancer. Oncogene. 39:4567–4580. 2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Derynck R, Akhurst RJ and Balmain A:
TGF-beta signaling in tumor suppression and cancer progression. Nat
Genet. 29:117–129. 2001.PubMed/NCBI View Article : Google Scholar
|
46
|
Padua D and Massagué J: Roles of TGFbeta
in metastasis. Cell Res. 19:89–102. 2009.PubMed/NCBI View Article : Google Scholar
|
47
|
Kwon OS, Oh E, Park JR, Lee JS, Bae GY,
Koo JH, Kim H, Choi YL, Choi YS, Kim J and Cha HJ: GalNAc-T14
promotes metastasis through Wnt dependent HOXB9 expression in lung
adenocarcinoma. Oncotarget. 6:41916–41928. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Pu J, Shen J, Zhong Z, Yanling M and Gao
J: KANK1 regulates paclitaxel resistance in lung adenocarcinoma
A549 cells. Artif Cells Nanomed Biotechnol. 48:639–647.
2020.PubMed/NCBI View Article : Google Scholar
|