SOCS1 silencing can break high-dose dendritic cell immunotherapy-induced immune tolerance
- Authors:
- Published online on: January 1, 2008 https://doi.org/10.3892/mmr.1.1.61
- Pages: 61-70
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Dendritic cells (DCs) play a pivotal role in T cell-mediated immunity and have been shown to induce strong anti-tumor immune responses. As of yet, only a limited number of objective tumor regressions have been observed in clinical studies using a DC vaccine. Suppressor of cytokine signaling-1 (SOCS1) is a key negative regulator of the JAK/STAT signal pathway and plays an essential role in suppressing systemic autoimmunity that is mediated by DCs. The aim of this study was to investigate whether SOCS1-silenced DCs can break the vaccine-induced immune tolerance stimulated by high-dose DC, thereby enhancing anti-tumor activity. In the mouse melanoma model, we found that a 2x106 TRP2-pulsed DC vaccine was able to induce immune tolerance, while a 2x106 SOCS1-silenced DC/TRP2 vaccine prevented immune tolerance. Further experiments revealed that activation-induced T cell death (AICD) through the Fas/Fas-L pathway may play a crucial role in immune tolerance induced by 2x106 TRP2-pulsed DC. SOCS1-silencing in DCs could prevent immune tolerance by inhibiting Fas and Fas-L expression, induced by an increase in IL-12p70 and IL-6 production. In addition, in 2x106 SOCS1-silenced DC/TRP2 immunized mice, higher levels of IL-12p70 and IFN-γ and lower IL-17 production may inhibit tumor angiogenesis and therefore assist in breaking immune tolerance. In conclusion, high-doses of DCs can inhibit the vaccine-induced AICD of T cells and cytokine regulation in tumor angiogenesis. These results indicate that SOCS1-silenced DC vaccines may greatly enhance anti-tumor activity by breaking self-tolerance.