1
|
Brooke G, Cook M, Blair C, et al:
Therapeutic applications of mesenchymal stromal cells. Semi Cell
Dev Biol. 18:846–858. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Le Blanc K, Frassoni F, Ball L, et al:
Mesenchymal stem cells for treatment of steroid-resistant, severe,
acute graft-versus-host disease: a phase II study. Lancet.
371:1579–1586. 2008.
|
3
|
Sun LY, Kentaro A, Zhang HY, et al:
Mesenchymal stem cell transplantation reverses multiorgan
dysfunction in systemic lupus erythematosus mice and humans. Stem
Cells. 27:1421–1432. 2009. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Centeno CJ, Busse D, Kisiday J, Keohan C,
Freeman M and Karli D: Increased knee cartilage volume in
degenerative joint disease using percutaneously implanted,
autologous mesenchymal stem cells. Pain Physician. 11:343–353.
2008.
|
5
|
Sekiya I, Larson BL, Smith JR, Pochampally
R, Cui JG and Prockop DJ: Expansion of human adult stem cells from
bone marrow stroma: conditions that maximize the yields of early
progenitors and evaluate their quality. Stem Cells. 20:530–541.
2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Parolini O, Alviano F, Bergwerf I, et al:
Toward cell therapy using placenta-derived cells: disease
mechanisms, cell biology, preclinical studies, and regulatory
aspects at the round table. Stem Cells Dev. 19:143–155. 2010.
View Article : Google Scholar
|
7
|
Chang CJ, Yen ML, Chen YC, et al:
Placenta-derived multipotent cells exhibit immunosuppressive
properties that are enhanced in the presence of interferon-gamma.
Stem Cells. 24:2466–2477. 2006. View Article : Google Scholar
|
8
|
Magatti M, De Munari S, Vertua E, Gibelli
L, Wengler GS and Parolini O: Human amnion mesenchyme harbors cells
with allogeneic T-cell suppression and stimulation capabilities.
Stem Cells. 26:182–192. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bailo M, Soncini M, Vertua E, et al:
Engraftment potential of human amnion and chorion cells derived
from term placenta. Transplantation. 78:1439–1448. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li H, Niederkorn JY, Neelam S, et al:
Immunosuppressive factors secreted by human amniotic epithelial
cells. Invest Ophthalmol Vis Sci. 46:900–907. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Magatti M, De Munari S, Vertua E, et al:
Amniotic mesenchymal tissue cells inhibit dendritic cell
differentiation of peripheral blood and amnion resident monocytes.
Cell Transplant. 18:899–914. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pittenger MF, Mackay AM, Beck SC, et al:
Multilineage potential of mesenchymal cells. Science. 284:143–147.
1999. View Article : Google Scholar
|
13
|
Mareschi K, Ferrero I, Rustichelli D, et
al: Expansion of mesenchymal stem cells isolated from pediatric and
adult donor bone marrow. J Cell Biochem. 97:744–754. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Evangelista M, Soncini M and Parolini O:
Placenta-derived stem cells: new hope for cell therapy.
Cytotechnology. 58:33–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Barlow S, Brooke G, Chatterjee K, et al:
Comparison of human placenta- and bone marrow-derived multipotent
mesenchymal stem cells. Stem Cells Dev. 17:1095–1107. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Portmann-Lanz CB, Schoeberlein A, Huber A,
et al: Placental mesenchymal stem cells as potential autologous
graft for preand perinatal neuroregeneration. Am J Obstet Gynecol.
194:664–673. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sakuragawa N, Kakinuma K, Kikuchi A, et
al: Human amnion mesenchyme cells express phenotypes of neuroglial
progenitor cells. J Neurosci Res. 78:208–214. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wei JP, Zhang TS, Kawa S, et al: Human
amnion-isolated cells normalize blood glucose in
streptozotocin-induced diabetic mice. Cell Transplant. 12:545–552.
2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Roelen DL, van der Mast BJ, in’t Anker PS,
et al: Differential immunomodulatory effects of fetal versus
maternal multipotent stromal cells. Hum Immunol. 70:16–23. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Brooke G, Rossetti T, Pelekanos R, et al:
Manufacturing of human placenta-derived mesenchymal stem cells for
clinical trials. Br J Haematol. 144:571–579. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mannello F and Tonti GA: No breakthroughs
for human mesenchymal and embryonic stem cell culture: conditioned
medium, feeder layer, or feeder-free; medium with fetal calf serum,
human serum, or enriched plasma; serum-free, serum replacement
nonconditioned medium, or ad hoc formula? all that glitters is not
gold! Stem Cells. 25:1603–1609. 2007.
|
22
|
Tuschong L, Soenen SL, Blaese RM, Candotti
F and Muul LM: Immune response to fetal calf serum by two adenosine
deaminase-deficient patients after T cell gene therapy. Hum Gene
Ther. 13:1605–1610. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Spees JL, Gregory CA, Singh H, et al:
Internalized antigens must be removed to prepare hypoimmunogenic
mesenchymal stem cells for cell and gene therapy. Mol Ther.
9:747–756. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Berger MG, Veyrat-Masson R, Rapatel C,
Descamps S, Chassagne J and Boiret-Dupre N: Cell culture medium
composition and translational adult bone marrow-derived stem cell
research. Stem Cells. 24:2888–2990. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lam AC, Li K, Zang ZB, et al: Preclinical
ex vivo expansion of cord blood hematopoietic stem and progenitor
cells: duration of culture; the media, serum supplements, and
growth factors used; and engraftment in NOD/SCID mice. Transfusion.
41:1567–1576. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim YM, Jung MH, Song HY, et al: Ex vivo
expansion of Human umbilical cord blood derived T lymphocytes with
homologous cord blood plasma. Tohoku J Exp Med. 205:115–122. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Shetty P, Bharucha K and Tanavde V: Human
umbilical cord blood serum can replace fetal bovine serum in the
culture of mesenchymal stem cells. Cell Biol Int. 31:293–298. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mizuno N, Shiba H, Ozeki Y, et al: Human
autologous serum obtained using a completely closed bag system as a
substitute for foetal calf serum in human mesenchymal stem cell
cultures. Cell Biol Int. 30:521–524. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xia SX, Gao YZ, Bian SZ, et al: Genetic
polymorphisms of two STR loci D2S1399 and D5S2500 in eastern
Chinese Han population. Fa Yi Xue Za Zhi. 20:200–201.
2004.PubMed/NCBI
|
30
|
Nievas P, Martinez Jarreta B, Abecia E and
Lareu MV: Fluorescence based amplification of the STR loci D18S535,
D1S1656 and D12S391 in a population sample from Aragon (North
Spain). Int J Legal Med. 113:58–59. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Parolini O, Alviano F, Bagnara GP, et al:
Concise review: isolation and characterization of cells from human
term placenta: outcome of the first international Workshop on
Placenta Derived Stem Cells. Stem Cells. 26:300–311. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Caplan AL: Why are MSCs therapeutic? New
data: new insight. J Pathol. 217:318–324. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fazekasova H, Lechler R, Langford K and
Lombardi G: Placenta-derived MSCs are partially immunogenic and
less immunomodulatory than bone marrow-derived MSCs. J Tissue Eng
Regen Med. 5:684–694. 2011. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Pilz GA, Ulrich C, Ruh M, et al: Human
term placenta-derived mesenchymal stromal cells are less prone to
osteogenic differentiation than bone marrow-derived mesenchymal
stromal cells. Stem Cells Dev. 20:635–646. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mohr S, Portmann-Lanz CB, Schoeberlein A,
Sager R and Surbek DV: Generation of an osteogenic graft from human
placenta and placenta-derived mesenchymal stem cells. Reprod Sci.
17:1006–1015. 2010. View Article : Google Scholar : PubMed/NCBI
|