1
|
Frazer R, Irvine AE and McMullin MF:
Chronic myeloid leukaemia in the 21st century. Ulster Med J.
76:8–17. 2007.PubMed/NCBI
|
2
|
Faderl S, Talpaz M, Estrov Z and
Kantarjian HM: Chronic myelogenous leukemia: biology and therapy.
Ann Intern Med. 131:207–219. 1999. View Article : Google Scholar
|
3
|
Nowefl PC and Hungerford DA: A minute
chromosome in human chronic granulocytic leukemia. Science.
142:14971960.
|
4
|
Rowley JD: Letter: A new consistent
chromosomal abnormality in chronic myelogenous leukaemia identified
by quinacrine fluorescence and Giemsa staining. Nature.
243:290–293. 1973. View
Article : Google Scholar
|
5
|
Tefferi A, Bren GD, Wagner KV, Schaid DJ,
Ash RC and Thibodeau SN: The location of the Philadelphia
chromosomal breakpoint site and prognosis in chronic granulocytic
leukemia. Leukemia. 4:839–842. 1990.PubMed/NCBI
|
6
|
Lugo TG, Pendergast AM, Muller AJ and
Witte ON: Tyrosine kinase activity and transformation potency of
BCR-ABL oncogene products. Science. 247:1079–1082. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shtivelman E, Lifshitz B, Gale RP and
Canaani E: Fused transcript of abl and bcr genes in chronic
myelogenous leukaemia. Nature. 315:550–554. 1985. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mitelman F, Johansson B and Mertens F: The
impact of translocations and gene fusions on cancer causation. Nat
Rev Cancer. 7:233–245. 2007. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Ha KC, Lalonde E, Li L, et al:
Identification of gene fusion transcripts by transcriptome
sequencing in BRCA1-mutated breast cancers and cell lines. BMC Med
Genomics. 4:752011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Maher CA, Kumar-Sinha C, Cao X, et al:
Transcriptome sequencing to detect gene fusions in cancer. Nature.
458:97–101. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tang F, Barbacioru C, Wang Y, et al:
mRNA-Seq whole-transcriptome analysis of a single cell. Nat
Methods. 6:377–382. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mortazavi A, Williams BA, McCue K,
Schaeffer L and Wold B: Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods. 5:621–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang Z, Gerstein M and Snyder M: RNA-Seq:
a revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63.
2009. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Trapnell C, Pachter L and Salzberg SL:
TopHat: discovering splice junctions with RNA-Seq. Bioinformatics.
25:1105–1111. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Roberts A, Trapnell C, Donaghey J, Rinn JL
and Pachter L: Improving RNA-Seq expression estimates by correcting
for fragment bias. Genome Biol. 12:R222011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang H and Wong WH: Statistical
inferences for isoform expression in RNA-Seq. Bioinformatics.
25:1026–1032. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hubbard TJ, Aken BL, Ayling S, et al:
Ensembl 2009. Nucleic Acids Res. 37:D690–D697. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
McPherson A, Hormozdiari F, Zayed A, et
al: deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq
data. PLoS Comput Biol. 7:e10011382011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim D and Salzberg SL: TopHat-Fusion: an
algorithm for discovery of novel fusion transcripts. Genome Biol.
12:R722011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Steidl C, Shah SP, Woolcock BW, et al: MHC
class II transactivator CIITA is a recurrent gene fusion partner in
lymphoid cancers. Nature. 471:377–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nacu S, Yuan W, Kan Z, et al: Deep RNA
sequencing analysis of readthrough gene fusions in human prostate
adenocarcinoma and reference samples. BMC Med Genomics. 4:112011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Melo JV, Gordon DE, Cross NC and Goldman
JM: The ABL-BCR fusion gene is expressed in chronic myeloid
leukemia. Blood. 81:158–165. 1993.PubMed/NCBI
|
23
|
Quintas-Cardama A and Cortes J: Molecular
biology of BCR-ABL1-positive chronic myeloid leukemia. Blood.
113:1619–1630. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Deininger MW, Goldman JM and Melo JV: The
molecular biology of chronic myeloid leukemia. Blood. 96:3343–3356.
2000.PubMed/NCBI
|
25
|
Verma D, Kantarjian HM, Jones D, et al:
Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of
characteristics, outcomes and prognostic significance. Blood.
114:2232–2235. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Skotheim RI, Thomassen GO, Eken M, et al:
A universal assay for detection of oncogenic fusion transcripts by
oligo microarray analysis. Mol Cancer. 8:52009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen W, Kalscheuer V, Tzschach A, et al:
Mapping translocation breakpoints by next-generation sequencing.
Genome Res. 18:1143–1149. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Campbell PJ, Stephens PJ, Pleasance ED, et
al: Identification of somatically acquired rearrangements in cancer
using genome-wide massively parallel paired-end sequencing. Nat
Genet. 40:722–729. 2008. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Hermans A, Selleri L, Gow J and Grosveld
GC: Absence of alternative splicing in BCR-ABL mRNA in chronic
myeloid leukemia cell lines. Blood. 72:2066–2069. 1988.PubMed/NCBI
|
30
|
Vincourt JB, Jullien D, Amalric F and
Girard JP: Molecular and functional characterization of SLC26A11, a
sodium-independent sulfate transporter from high endothelial
venules. FASEB J. 17:890–892. 2003.PubMed/NCBI
|
31
|
Pruitt KD, Tatusova T and Maglott DR: NCBI
Reference Sequence (RefSeq): a curated non-redundant sequence
database of genomes, transcripts and proteins. Nucleic Acids Res.
33:D501–D504. 2005. View Article : Google Scholar
|