1
|
Valimaki MJ, Karkkainen M, Lamberg-Allardt
C, et al: Exercise, smoking, and calcium intake during adolescence
and early adulthood as determinants of peak bone mass. Br Med J.
309:230–235. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ortego-Centeno N, Munoz-Torres M, Jodar E,
Hernandez-Quero J, Jurado-Duce A and Torres-Puchol JH: Effect of
tobacco consumption on bone mineral density in healthy young males.
Calcif Tissue Int. 60:496–500. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kelly PJ, Morrison NA, Sambrook PN, Nguyen
TV and Eisman JA: Genetic influences on bone turnover, bone density
and fracture. Eur J Endocrinol. 133:265–271. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lorentzon M, Mellström D, Haug E and
Ohlsson C: Smoking is associated with lower bone mineral density
and reduced cortical thickness in young men. J Clin Endocrinol
Metab. 92:497–503. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Medraœ M, Jankowska EA and Rogucka E: The
effect of smoking tobacco and drinking of alcohol and coffee on
bone mineral density of healthy men 40 years of age. Pol Arch Med
Wewn. 103:187–193. 2000.PubMed/NCBI
|
6
|
Wüst RCI, Winwood K, Wilks DC, Morse CI,
Degens H and Rittweger J: Effects of smoking on tibial and radial
bone mass and strength may diminish with age. J Clin Endocrinol
Metab. 95:2763–2771. 2010.PubMed/NCBI
|
7
|
Sheehan D, Meade G, Foley VM and Dowd CA:
Structure, function and evolution of glutathione transferases:
implications for classification of non-mammalian members of an
ancient enzyme superfamily. Biochem J. 360:1–16. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pemble S, Schroeder KR, Spencer SR, et al:
Human glutathione S-transferase theta (GSTT1): cDNA cloning and the
characterization of a genetic polymorphism. Biochem J. 300:271–276.
1994.PubMed/NCBI
|
9
|
Seidegard J, Vorachek WR, Pero RW and
Pearson WR: Hereditary differences in the expression of the human
glutathione transferase active on trans-stilbene oxide are due to a
gene deletion. Proc Natl Acad Sci USA. 85:7293–7297. 1988.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Dialyna IA, Miyakis S, Georgatou N and
Spandidos DA: Genetic polymorphisms of CYP1A1, GSTM1
and GSTT1 genes and lung cancer risk. Oncol Rep.
10:1829–1835. 2003.
|
11
|
Setiawan VW, Zhang ZF, Yu GP, et al: GSTT1
and GSTM1 null genotypes and the risk of gastric cancer: a
case-control study in a Chinese population. Cancer Epidemiol
Biomarkers Prev. 9:73–80. 2000.PubMed/NCBI
|
12
|
Nelson HH, Wiencke JK, Christiani DC, et
al: Ethnic differences in the prevalence of the homozygous deleted
genotype of glutathione S-transferase θ. Carcinogenesis (Lond).
16:1243–1245. 1995.
|
13
|
Baecke JA, Burema J and Frijters JE: A
short questionnaire for the measurement of habitual physical
activity in epidemiological studies. Am J Clin Nutr. 36:936–942.
1982.PubMed/NCBI
|
14
|
Abdel-Rahman SZ, el-Zein RA, Anwar WA and
Au WW: A multiplex PCR procedure for polymorphic analysis of GSTM1
and GSTT1 genes in population studies. Cancer Lett. 107:229–233.
1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen J, Lin G, Yuan W, Tan J, Bolt HM and
Thier R: Glutathione transferase T1 and M1 genotype polymorphism in
the normal population of Shanghai. Arch Toxicol. 72:456–458. 1998.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Landi S: Mammalian class theta GST and
differential susceptibility to carcinogens: a review. Mutat Res.
463:247–283. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ruano-Ravina A, Figueiras A, Loidi L and
Barros-Dios JM: GSTM1 and GSTT1 polymorphisms, tobacco and risk of
lung cancer: a case-control study from Galicia, Spain. Anticancer
Res. 23:4333–4337. 2003.PubMed/NCBI
|
18
|
Lee KM, Kang D, Lee SJ, et al: Interactive
effect of genetic polymorphism of glutathione S-transferase M1 and
smoking on squamous cell lung cancer risk in Korea. Oncol Rep.
16:1035–1039. 2006.PubMed/NCBI
|
19
|
Fang MA, Frost PJ, Iida-Klein A and Hahn
TJ: Effects of nicotine on cellular function in UMR 106-01
osteoblast-like cells. Bone. 12:283–286. 1991. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ramp WK, Lenz LG and Galvin RJS: Nicotine
inhibits collagen synthesis and alkaline phosphatase activity, but
stimulates DNA synthesis in osteoblast-like cells. Proc Soc Exp
Biol Med. 197:36–43. 1991. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fung YK, Iwaniec U, Cullen DM, Akhter MP,
Haven MC and Timmins P: Long-term effects of nicotine on bone and
calciotropic hormones in adult female rats. Pharmacol Toxicol.
85:181–187. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hayes JD and McLellan LI: Glutathione and
glutathione-dependent enzymes represent a co-ordinately regulated
defence against oxidative stress. Free Radic Res. 31:273–300. 1999.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Basu S, Michaelsson K, Olofsson H,
Johansson S and Melhus H: Association between oxidative stress and
bone mineral density. Biochem Biophys Res Commun. 288:275–279.
2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Koh JM, Lee YS, Kim YS, et al:
Homocysteine enhances bone resorption by stimulation of osteoclast
formation and activity through increased intracellular ROS
generation. J Bone Miner Res. 21:1003–1011. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Almeida M, Han L, Martin-Millan M, O’Brien
CA and Manolagas SC: Oxidative stress antagonizes wnt signaling in
osteoblast precursors by diverting β-catenin from T cell factor- to
forkhead box O-mediated transcription. J Biol Chem.
282:27298–27305. 2007.
|
26
|
Almeida M, Han L, Martin-Millan M, et al:
Skeletal involution by age-associated oxidative stress and its
acceleration by lossof sex steroids. J Biol Chem. 282:27285–27297.
2007. View Article : Google Scholar : PubMed/NCBI
|