1
|
Christie MJ: Cellular neuroadaptations to
chronic opioids: tolerance, withdrawal and addiction. Br J
Pharmacol. 154:384–396. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weller IV, Cohn D, Sierralta A, et al:
Clinical, biochemical, serological, histological and
ultrastructural features of liver disease in drug abusers. Gut.
25:417–423. 1984. View Article : Google Scholar : PubMed/NCBI
|
3
|
Colombo JP and Colombo J: Plasma
gamma-glutamyl transpeptidase in heroin addicts. Clin Chim Acta.
95:483–486. 1979. View Article : Google Scholar : PubMed/NCBI
|
4
|
May B and Helmstaedt D: Liver disease in
drug addicts: clinical course-toxicological and clinical
pharmacological aspects. Int J Clin Pharmacol Biopharm. 12:50–56.
1975.PubMed/NCBI
|
5
|
Cunningham EE, Brentjens JR, Zielezny MA,
Andres GA and Venuto RC: Heroin nephropathy. A clinicopathologic
and epidemiologic study. Am J Med. 68:47–53. 1980.PubMed/NCBI
|
6
|
Connolly JO, Gillmore JD, Lachmann HJ,
Davenport A, Hawkins PN and Woolfson RG: Renal amyloidosis in
intravenous drug users. QJM. 99:737–742. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dettmeyer R, Wessling B and Madea B:
Heroin associated nephropathy - a post-mortem study. Forensic Sci
Int. 95:109–116. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bakir AA and Dunea G: Drugs of abuse and
renal disease. Curr Opin Nephrol Hypertens. 5:122–126. 1996.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Jaffe JA and Kimmel PL: Chronic
nephropathies of cocaine and heroin abuse: a critical review. Clin
J Am Soc Nephrol. 1:655–667. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Payabvash S, Beheshtian A, Salmasi AH, et
al: Chronic morphine treatment induces oxidant and apoptotic damage
in the mice liver. Life Sci. 79:972–980. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Panchenko LF, Pirozhkov SV, Nadezhdin AV,
Baronets Vlu and Usmanova NN: Lipid peroxidation, peroxyl
radical-scavenging system of plasma and liver and heart pathology
in adolescence heroin users. Vopr Med Khim. 45:501–506. 1999.(In
Russian).
|
12
|
Sumathi T and Niranjali Devaraj S: Effect
of Bacopa monniera on liver and kidney toxicity in chronic
use of opioids. Phytomedicine. 16:897–903. 2009.
|
13
|
Atici S, Cinel I, Cinel L, Doruk N,
Eskandari G and Oral U: Liver and kidney toxicity in chronic use of
opioids: an experimental long term treatment model. J Biosci.
30:245–252. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang YT, Zheng QS, Pan J and Zheng RL:
Oxidative damage of biomolecules in mouse liver induced by morphine
and protected by antioxidants. Basic Clin Pharmacol Toxicol.
95:53–58. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Burke-Gaffney A, Callister ME and Nakamura
H: Thioredoxin: friend or foe in human disease? Trends Pharmacol
Sci. 26:398–404. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lillig CH and Holmgren A: Thioredoxin and
related molecules - from biology to health and disease. Antioxid
Redox Signal. 9:25–47. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chae HZ, Chung SJ and Rhee SG:
Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem.
269:27670–27678. 1994.PubMed/NCBI
|
18
|
Das KC and Das CK: Thioredoxin, a singlet
oxygen quencher and hydroxyl radical scavenger: redox independent
functions. Biochem Biophys Res Commun. 277:443–447. 2000.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Nakamura H, Matsuda M, Furuke K, et al:
Adult T cell leukemia-derived factor/human thioredoxin protects
endothelial F-2 cell injury caused by activated neutrophils or
hydrogen peroxide. Immunol Lett. 42:75–80. 1994. View Article : Google Scholar
|
20
|
Takagi Y, Mitsui A, Nishiyama A, et al:
Overexpression of thioredoxin in transgenic mice attenuates focal
ischemic brain damage. Proc Natl Acad Sci USA. 96:4131–4136. 1999.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Evans CG, Chang L and Gestwicki JE: Heat
shock protein 70 (hsp70) as an emerging drug target. J Med Chem.
53:4585–4602. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bai J, Nakamura H, Hattori I, Tanito M and
Yodoi J: Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced
neurotoxicity in rat PC12 cells. Neurosci Lett. 321:81–84. 2002.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Dekigai H, Nakamura H, Bai J, et al:
Geranylgeranylacetone promotes induction and secretion of
thioredoxin in gastric mucosal cells and peripheral blood
lymphocytes. Free Radic Res. 35:23–30. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fudaba Y, Ohdan H, Tashiro H, et al:
Geranylgeranylacetone, a heat shock protein inducer, prevents
primary graft nonfunction in rat liver transplantation.
Transplantation. 72:184–189. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yamagami K, Yamamoto Y, Ishikawa Y,
Yonezawa K, Toyokuni S and Yamaoka Y: Effects of
geranyl-geranyl-acetone administration before heat shock
preconditioning for conferring tolerance against
ischemia-reperfusion injury in rat livers. J Lab Clin Med.
135:465–475. 2000. View Article : Google Scholar
|
26
|
Ooie T, Takahashi N, Saikawa T, et al:
Single oral dose of geranylgeranylacetone induces heat-shock
protein 72 and renders protection against ischemia/reperfusion
injury in rat heart. Circulation. 104:1837–1843. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fujiki M, Kobayashi H, Abe T and Ishii K:
Astroglial activation accompanies heat shock protein upregulation
in rat brain following single oral dose of geranylgeranylacetone.
Brain Res. 991:254–257. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yamanaka K, Takahashi N, Ooie T, Kaneda K,
Yoshimatsu H and Saikawa T: Role of protein kinase C in
geranylgeranylacetone-induced expression of heat-shock protein 72
and cardioprotection in the rat heart. J Mol Cell Cardiol.
35:785–794. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Luo FC, Qi L, Lv T, et al:
Geranylgeranylacetone protects mice against morphine-induced
hyperlocomotion, rewarding effect, and withdrawal syndrome. Free
Radic Biol Med. 52:1218–1227. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mao H, Li Z, Zhou Y, et al: HSP72
attenuates renal tubular cell apoptosis and interstitial fibrosis
in obstructive nephropathy. Am J Physiol Renal Physiol.
295:F202–F214. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fudaba Y, Tashiro H, Miyata Y, et al: Oral
administration of geranylgeranylacetone protects rat livers from
warm ischemic injury. Transplant Proc. 31:2918–2919. 1999.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ikeyama S, Kusumoto K, Miyake H, Rokutan K
and Tashiro S: A non-toxic heat shock protein 70 inducer,
geranylgeranylacetone, suppresses apoptosis of cultured rat
hepatocytes caused by hydrogen peroxide and ethanol. J Hepatol.
35:53–61. 2001. View Article : Google Scholar
|
33
|
Nishida T, Matsura T, Nakada J, et al:
Geranylgeranylacetone protects against acetaminophen-induced
hepatotoxicity by inducing heat shock protein 70. Toxicology.
219:187–196. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kanemura H, Kusumoto K, Miyake H, Tashiro
S, Rokutan K and Shimada M: Geranylgeranylacetone prevents acute
liver damage after massive hepatectomy in rats through suppression
of a CXC chemokine GRO1 and induction of heat shock proteins. J
Gastrointest Surg. 13:66–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Suzuki S, Maruyama S, Sato W, et al:
Geranylgeranylacetone ameliorates ischemic acute renal failure via
induction of Hsp70. Kidney Int. 67:2210–2220. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Katsuno M, Sang C, Adachi H, et al:
Pharmacological induction of heat-shock proteins alleviates
polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci
USA. 102:16801–16806. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ooie T, Kajimoto M, Takahashi N, et al:
Effects of insulin resistance on geranylgeranylacetone-induced
expression of heat shock protein 72 and cardioprotection in
high-fat diet rats. Life Sci. 77:869–881. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kim YH, Song JJ, Kim YC, et al:
Geranylgeranylacetone ameliorates acute cochlear damage caused by
3-nitropropionic acid. Neurotoxicology. 31:317–325. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang K, Zhao T, Huang X, et al:
Preinduction of HSP70 promotes hypoxic tolerance and facilitates
acclimatization to acute hypobaric hypoxia in mouse brain. Cell
Stress Chaperones. 14:407–415. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hassanzadeh K, Roshangar L, Habibi-asl B,
et al: Riluzole prevents morphine-induced apoptosis in rat cerebral
cortex. Pharmacol Rep. 63:697–707. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hassanzadeh K, Habibi-asl B, Farajnia S
and Roshangar L: Minocycline prevents morphine-induced apoptosis in
rat cerebral cortex and lumbar spinal cord: a possible mechanism
for attenuating morphine tolerance. Neurotox Res. 19:649–659. 2011.
View Article : Google Scholar
|
42
|
Crowe AV, Howse M, Bell GM and Henry JA:
Substance abuse and the kidney. QJM. 93:147–152. 2000. View Article : Google Scholar
|
43
|
Singhal PC, Sharma P, Sanwal V, et al:
Morphine modulates proliferation of kidney fibroblasts. Kidney Int.
53:350–357. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Singhal PC, Gibbons N and Abramovici M:
Long term effects of morphine on mesangial cell proliferation and
matrix synthesis. Kidney Int. 41:1560–1570. 1992. View Article : Google Scholar : PubMed/NCBI
|
45
|
Patel J, Manjappa N, Bhat R, Mehrotra P,
Bhaskaran M and Singhal PC: Role of oxidative stress and heme
oxygenase activity in morphine-induced glomerular epithelial cell
growth. Am J Physiol Renal Physiol. 285:F861–F869. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pan J, Zhang Q, Zhang Y, Ouyang Z, Zheng Q
and Zheng R: Oxidative stress in heroin administered mice and
natural antioxidants protection. Life Sci. 77:183–193. 2005.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Singhal PC, Bhaskaran M, Patel J, et al:
Role of p38 mitogen-activated protein kinase phosphorylation and
Fas-Fas ligand interaction in morphine-induced macrophage
apoptosis. J Immunol. 168:4025–4033. 2002. View Article : Google Scholar
|
48
|
Khanna N and Singh N: Role of caspases in
apoptosis and disease. Indian J Physiol Pharmacol. 43:151–159.
1999.
|
49
|
Friedlander RM: Apoptosis and caspases in
neurodegenerative diseases. N Engl J Med. 348:1365–1375. 2003.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Hassanzadeh K, Habibi-asl B, Roshangar L,
Nemati M, Ansarin M and Farajnia S: Intracerebroventricular
administration of riluzole prevents morphine-induced apoptosis in
the lumbar region of the rat spinal cord. Pharmacol Rep.
62:664–673. 2010. View Article : Google Scholar
|
51
|
Fujita E, Kouroku Y, Jimbo A, Isoai A,
Maruyama K and Momoi T: Caspase-12 processing and fragment
translocation into nuclei of tunicamycin-treated cells. Cell Death
Differ. 9:1108–1114. 2002. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nakagawa T, Zhu H, Morishima N, et al:
Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and
cytotoxicity by amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
53
|
Calabrese V, Cornelius C, Mancuso C, et
al: Vitagenes, dietary antioxidants and neuroprotection in
neurodegenerative diseases. Front Biosci. 14:376–397. 2009.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Masutani H, Bai J, Kim YC and Yodoi J:
Thioredoxin as a neurotrophic cofactor and an important regulator
of neuroprotection. Mol Neurobiol. 29:229–242. 2004. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ammon S, Mayer P, Riechert U, Tischmeyer H
and Hollt V: Microarray analysis of genes expressed in the frontal
cortex of rats chronically treated with morphine and after naloxone
precipitated withdrawal. Brain Res Mol Brain Res. 112:113–125.
2003. View Article : Google Scholar
|
56
|
Rodriguez Parkitna JM, Bilecki W,
Mierzejewski P, et al: Effects of morphine on gene expression in
the rat amygdala. J Neurochem. 91:38–48. 2004.PubMed/NCBI
|
57
|
Hoshino Y, Nakamura T, Sato A, Mishima M,
Yodoi J and Nakamura H: Neurotropin demonstrates cytoprotective
effects in lung cells through the induction of thioredoxin-1. Am J
Respir Cell Mol Biol. 37:438–446. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tanito M, Kwon YW, Kondo N, et al:
Cytoprotective effects of geranylgeranylacetone against retinal
photooxidative damage. J Neurosci. 25:2396–2404. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Tanito M, Masutani H, Kim YC, Nishikawa M,
Ohira A and Yodoi J: Sulforaphane induces thioredoxin through the
antioxidant-responsive element and attenuates retinal light damage
in mice. Invest Ophthalmol Vis Sci. 46:979–987. 2005. View Article : Google Scholar : PubMed/NCBI
|
60
|
Luo FC, Wang SD, Li K, Nakamura H, Yodoi J
and Bai J: Panaxatriol saponins extracted from Panax
notoginseng induces thioredoxin-1 and prevents
1-methyl-4-phenylpyridinium ion-induced neurotoxicity. J
Ethnopharmacol. 127:419–423. 2010.
|
61
|
Hashimoto S, Matsumoto K, Gon Y, et al:
Thioredoxin negatively regulates p38 MAP kinase activation and IL-6
production by tumor necrosis factor-alpha. Biochem Biophys Res
Commun. 258:443–447. 1999. View Article : Google Scholar : PubMed/NCBI
|
62
|
Saitoh M, Nishitoh H, Fujii M, et al:
Mammalian thioredoxin is a direct inhibitor of apoptosis
signal-regulating kinase (ASK) 1. EMBO J. 17:2596–2606. 1998.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Guo S, Wharton W, Moseley P and Shi H:
Heat shock protein 70 regulates cellular redox status by modulating
glutathione-related enzyme activities. Cell Stress Chaperones.
12:245–254. 2007. View Article : Google Scholar : PubMed/NCBI
|
64
|
Hirota K, Nakamura H, Arai T, et al:
Geranylgeranylacetone enhances expression of thioredoxin and
suppresses ethanol-induced cytotoxicity in cultured hepatocytes.
Biochem Biophys Res Commun. 275:825–830. 2000. View Article : Google Scholar : PubMed/NCBI
|