1
|
Xavier RJ and Podolsky DK: Unravelling the
pathogenesis of inflammatory bowel disease. Nature. 448:427–434.
2007. View Article : Google Scholar
|
2
|
Torres MI and Rios A: Current view of the
immunopathogenesis in inflammatory bowel disease and its
implications for therapy. World J Gastroenterol. 14:1972–1980.
2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Carroll IM, Andrus JM, Bruno-Bárcena JM,
Klaenhammer TR, Hassan HM and Threadgill DS: Anti-inflammatory
properties of Lactobacillus gasseri expressing manganese
superoxide dismutase using the interleukin 10-deficient mouse model
of colitis. Am J Physiol Gastrointest Liver Physiol. 293:G729–G738.
2007.PubMed/NCBI
|
4
|
Dutra RC, Claudino RF, Bento AF, Marcon R,
Schmidt EC, Bouzon ZL, Pianowski LF and Calixto JB: Preventive and
therapeutic euphol treatment attenuates experimental colitis in
mice. PLoS One. 6:e271222011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Okayasu I, Hatakeyama S, Yamada M, Ohkusa
T, Inagaki Y and Nakaya R: A novel method in the induction of
reliable experimental acute and chronic ulcerative colitis in mice.
Gastroenterology. 98:694–702. 1990.PubMed/NCBI
|
6
|
Tokoi S, Ohkusa T, Okayasu I and Nakamura
K: Population changes in immunoglobulin-containing mononuclear
cells in dextran sulfate sodium-induced coltitis. J Gastroenterol.
31:182–188. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rezaie A, Parker RD and Abdollahi M:
Oxidative stress and pathogenesis of inflammatory bowel disease: an
epiphenomenon or the cause? Dig Dis Sci. 52:2015–2021. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Damiani CR, Benetton CA, Stoffel C,
Bardini KC, Cardoso VH, Di Giunta G, Pinho RA, Dal-Pizzol F and
Streck EL: Oxidative stress and metabolism in animal model of
colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol.
22:1846–1851. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Castillo-Muñoz N, Gómez-Alonso S,
García-Romero E and Hermosín-Gutiérrez I: Flavonol profiles of
Vitis vinifera red grapes and their single-cultivar wines. J
Agric Food Chem. 55:992–1002. 2007.
|
10
|
Lee YS and Choi EM: Myricetin inhibits
IL-1beta-induced inflammatory mediators in SW982 human synovial
sarcoma cells. Int Immunopharmacol. 10:812–814. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen W, Li Y, Li J, Han Q, Ye L and Li A:
Myricetin affords protection against peroxynitrite-mediated DNA
damage and hydroxyl radical formation. Food Chem Toxicol.
49:2439–2444. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nirmala P and Ramanathan M: Effect of
myricetin on 1,2 dimethylhydrazine induced rat colon
carcinogenesis. J Exp Ther Oncol. 9:101–108. 2011.PubMed/NCBI
|
13
|
Kang NJ, Jung SK, Lee KW and Lee HJ:
Myricetin is a potent chemopreventive phytochemical in skin
carcinogenesis. Ann NY Acad Sci. 1229:124–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Okayasu I, Hatakeyama S, Yamada M, Ohkusa
T, Inagaki Y and Nakaya R: A novel method in the induction of
reliable experimental acute and chronic ulcerative colitis in mice.
Gastroenterology. 98:694–702. 1990.PubMed/NCBI
|
15
|
Suzuki K, Ota H, Sasagawa S, Sakatani T
and Fujikura T: Assay method for myeloperoxidase in human
polymorphonuclear leukocytes. Anal Biochem. 132:345–352. 1983.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ohkawa H, Ohishi N and Yagi K: Assay for
lipid peroxides in animal tissues by thiobarbituric acid reaction.
Anal Biochem. 95:351–358. 1979. View Article : Google Scholar : PubMed/NCBI
|
17
|
Miranda KM, Espey MG and Wink DA: A rapid,
simple spectrophotometric method for simultaneous detection of
nitrate and nitrite. Nitric Oxide. 5:62–71. 2001. View Article : Google Scholar
|
18
|
Keshavarzian A, Morgan G, Sedghi S, Gordon
JH and Doria M: Role of reactive oxygen metabolites in experimental
colitis. Gut. 31:786–790. 1990. View Article : Google Scholar : PubMed/NCBI
|
19
|
Seril DN, Liao J, Yang GY and Yang CS:
Oxidative stress and ulcerative colitis-associated carcinogenesis:
studies in humans and animal models. Carcinogenesis. 24:353–362.
2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ishihara T, Tanaka K, Tasaka Y, Namba T,
Suzuki J, Ishihara T, Okamoto S, Hibi T, Takenaga M, Igarashi R,
Sato K, Mizushima Y and Mizushima T: Therapeutic effect of
lecithinized superoxide dismutase against colitis. J Pharmacol Exp
Ther. 328:152–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sutton A, Imbert A, Igoudjil A, Descatoire
V, Cazanave S, Pessayre D and Degoul F: The manganese superoxide
dismutase Ala16Val dimorphism modulates both mitochondrial import
and mRNA stability. Pharmacogenet Genomics. 15:311–319. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Creveling CR: The role of
catechol-O-methyltransferase in the inactivation of
catecholestrogen. Cell Mol Neurobiol. 23:289–291. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rogler G and Andus T: Cytokines in
inflammatory bowel disease. World J Surg. 22:382–389. 1998.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Arai Y, Takanashi H, Kitagawa H and
Okayasu I: Involvement of interleukin-1 in the development of
ulcerative colitis induced by dextran sulfate sodium in mice.
Cytokine. 10:890–896. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Naito Y, Takagi T, Uchiyama K, Kuroda M,
Kokura S, Ichikawa H, Yanagisawa R, Inoue K, Takano H, Satoh M,
Yoshida N, Okanoue T and Yoshikawa T: Reduced intestinal
inflammation induced by dextran sodium sulfate in
interleukin-6-deficient mice. Int J Mol Med. 14:191–196.
2004.PubMed/NCBI
|
26
|
Wang SJ, Tong Y, Lu S, Yang R, Liao X, Xu
YF and Li X: Anti-inflammatory activity of myricetin isolated from
Myrica rubra Sieb. et Zucc leaves. Planta Med. 76:1492–1496.
2010. View Article : Google Scholar : PubMed/NCBI
|