1
|
Olson EN: Gene regulatory networks in the
evolution and development of the heart. Science. 313:1922–1927.
2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bryantsev AL and Cripps RM: Cardiac gene
regulatory networks in Drosophila. Biochim Biophys Acta.
1789:343–353. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Black BL: Transcriptional pathways in
second heart field development. Semin Cell Dev Biol. 18:67–76.
2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Satou Y and Satoh N: Gene regulatory
networks for the development and evolution of the chordate heart.
Genes Dev. 20:2634–2638. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cripps RM and Olson EN: Control of cardiac
development by an evolutionarily conserved transcriptional network.
Dev Biol. 246:14–28. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Qian L, Huang Y, Spencer CI, Foley A,
Vedantham V, Liu L, Conway SJ, Fu JD and Srivastava D: In vivo
reprogramming of murine cardiac fibroblasts into induced
cardiomyocytes. Nature. 485:593–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brand T: Heart development: molecular
insights into cardiac specification and early morphogenesis. Dev
Biol. 258:1–19. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Song L, Yan W, Chen X, Deng CX, Wang Q and
Jiao K: Myocardial smad4 is essential for cardiogenesis in mouse
embryos. Circ Res. 101:277–285. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
van Wijk B, Moorman AF and van den Hoff
MJ: Role of bone morphogenetic proteins in cardiac differentiation.
Cardiovasc Res. 74:244–255. 2007.PubMed/NCBI
|
10
|
Wang J, Greene SB and Martin JF: BMP
signaling in congenital heart disease: new developments and future
directions. Birth Defects Res A Clin Mol Teratol. 91:441–448. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Sugi Y, Yamamura H, Okagawa H and Markwald
RR: Bone morphogenetic protein-2 can mediate myocardial regulation
of atrioventricular cushion mesenchymal cell formation in mice. Dev
Biol. 269:505–518. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang H and Bradley A: Mice deficient for
BMP2 are nonviable and have defects in amnion/chorion and cardiac
development. Development. 122:2977–2986. 1996.PubMed/NCBI
|
13
|
Lalani SR, Thakuria JV, Cox GF, Wang X, Bi
W, Bray MS, Shaw C, Cheung SW, Chinault AC, Boggs BA, Ou Z,
Brundage EK, Lupski JR, Gentile J, Waisbren S, Pursley A, Ma L,
Khajavi M, Zapata G, Friedman R, Kim JJ, Towbin JA, Stankiewicz P,
Schnittger S, Hansmann I, Ai T, Sood S, Wehrens XH, Martin JF,
Belmont JW and Potocki L: 20p12.3 microdeletion predisposes to
Wolff-Parkinson-White syndrome with variable neurocognitive
deficits. J Med Genet. 46:168–175. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamada M, Revelli JP, Eichele G, Barron M
and Schwartz RJ: Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes
during early heart development: evidence for BMP2 induction of
Tbx2. Dev Biol. 228:95–105. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schlange T, Andrée B, Arnold HH and Brand
T: BMP2 is required for early heart development during a distinct
time period. Mech Dev. 91:259–270. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jenuwein T and Allis CD: Translating the
histone code. Science. 293:1074–1080. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Clayton AL, Hazzalin CA and Mahadevan LC:
Enhanced histone acetylation and transcription: a dynamic
perspective. Mol Cell. 23:289–296. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Backs J and Olson EN: Control of cardiac
growth by histone acetylation/deacetylation. Circ Res. 98:15–24.
2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu G, Nan C, Rollo JC, Huang X and Tian J:
Sodium valproate-induced congenital cardiac abnormalities in mice
are associated with the inhibition of histone deacetylase. J Biomed
Sci. 17:162010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhong L, Zhu J, Lv T, Chen G, Sun H, Yang
X, Huang X and Tian J: Ethanol and its metabolites induce histone
lysine 9 acetylation and an alteration of the expression of heart
development-related genes in cardiac progenitor cells. Cardiovasc
Toxicol. 10:268–274. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng C, Zhu J, Zhao L, Lu T, Zhang W, Liu
Z and Tian J: Suberoylanilide hydroxamic acid promotes
cardiomyocyte differentiation of rat mesenchymal stem cells. Exp
Cell Res. 315:3044–3051. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
|
23
|
Yamashita H, Murayama C, Takasugi R,
Miyamoto A and Shimizu T: BMP-4 suppresses progesterone production
by inhibiting histone H3 acetylation of StAR in bovine granulosa
cells in vitro. Mol Cell Biochem. 348:183–190. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pan Q, Wu Y, Lin T, Yao H, Yang Z, Gao G,
Song E and Shen H: Bone morphogenetic protein-2 induces chromatin
remodeling and modification at the proximal promoter of Sox9 gene.
Biochem Biophys Res Commun. 379:356–361. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen G, Zhu J, Lv T, Wu G, Sun H, Huang X
and Tian J: Spatiotemporal expression of histone
acetyltransferases, p300 and CBP, in developing embryonic hearts. J
Biomed Sci. 16:242009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sun H, Yang X, Zhu J, Lv T, Chen Y, Chen
G, Zhong L, Li Y, Huang X, Huang G and Tian J: Inhibition of
p300-HAT results in a reduced histone acetylation and
down-regulation of gene expression in cardiac myocytes. Life Sci.
87:707–714. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shikama N, Lutz W, Kretzschmar R, Sauter
N, Roth JF, Marino S, Wittwer J, Scheidweiler A and Eckner R:
Essential function of p300 acetyltransferase activity in heart,
lung and small intestine formation. EMBO J. 22:5175–5185. 2003.
View Article : Google Scholar : PubMed/NCBI
|