Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro

  • Authors:
    • Yao-Li Chen
    • Meng-Yi Yan
    • Su-Yu Chien
    • Shou-Jen Kuo
    • Dar‑Ren Chen
    • Chun-Yuan Cheng
    • Chin-Cheng Su
  • View Affiliations

  • Published online on: March 20, 2013     https://doi.org/10.3892/mmr.2013.1381
  • Pages: 1487-1493
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Hepatic cancer remains a challenging disease and there is a need to identify new treatments. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional medicinal prescription, has been used to treat lymphadenopathy and exhibits cytotoxic activity in many types of human cancer cells. Our previous studies revealed that SJKJT is capable of inhibiting colon cancer colo 205 cells by inducing autophagy and apoptosis. However, the effects and molecular mechanisms of SJKJT in human hepatocellular carcinoma have not been clearly elucidated. In the present study we evaluated the effects of SJKJT in human hepatic cellular carcinoma Hep-G2 cells. The cytotoxicity of SJKJT in Hep-G2 cells was measured by MTT assay. The cell cycles were analyzed by fluorescence‑activated cell sorting (FACS). The protein expression of translationally controlled tumor protein (TCTP), Mcl-1, Fas, TNF-α, Caspase-8, Caspase-3 and Bax in Hep-G2 cells treated with SJKJT was evaluated by western blotting. The protein expression of Caspase-3 was also detected by immunofluorescence staining. The results showed that SJKJT inhibits Hep-G2 cells in a time- and dose‑dependent manner. During SJKJT treatment for 48 and 72 h, the half-maximum inhibitory concentration (IC50) was 1.48 and 0.94 mg/ml, respectively. The FACS results revealed that increased doses of SJKJT were capable of increasing the percentage of cells in the sub-G1 phase. Immunofluorescence staining showed that Hep-G2 treated with SJKJT had increased expression of Caspase-3. The western blot results showed that the protein expression of Fas, TNF-α, Caspase-8, Caspase- 3 and Bax was upregulated, but that of TCTP and Mcl-1 was downregulated in Hep-G2 cells treated with SJKJT. In conclusion, these findings indicated that SJKJT inhibits Hep-G2 cells. One of the molecular mechanisms responsible for this may be the increased Fas, TNF-α, Caspase-8, Caspase- 3 and Bax expression; another mechanism may be via decreasing TCTP and Mcl-1 expression in order to induce apoptosis.
View Figures
View References

Related Articles

Journal Cover

May 2013
Volume 7 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Yan M, Chien S, Kuo S, Chen DR, Cheng C and Su C: Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro. Mol Med Rep 7: 1487-1493, 2013.
APA
Chen, Y., Yan, M., Chien, S., Kuo, S., Chen, D., Cheng, C., & Su, C. (2013). Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro. Molecular Medicine Reports, 7, 1487-1493. https://doi.org/10.3892/mmr.2013.1381
MLA
Chen, Y., Yan, M., Chien, S., Kuo, S., Chen, D., Cheng, C., Su, C."Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro". Molecular Medicine Reports 7.5 (2013): 1487-1493.
Chicago
Chen, Y., Yan, M., Chien, S., Kuo, S., Chen, D., Cheng, C., Su, C."Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro". Molecular Medicine Reports 7, no. 5 (2013): 1487-1493. https://doi.org/10.3892/mmr.2013.1381