1
|
Yusuf S, Reddy S, Ounpuu S and Anand S:
Global burden of cardiovascular diseases: part I: general
considerations, the epidemiologic transition, risk factors, and
impact of urbanization. Circulation. 104:2746–2753. 2001.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Trogan E, Fayad ZA, Itskovich VV,
Aguinaldo JG, Mani V, Fallon JT, Chereshnev I and Fisher EA: Serial
studies of mouse atherosclerosis by in vivo magnetic resonance
imaging detect lesion regression after correction of dyslipidemia.
Arterioscler Thromb Vasc Biol. 24:1714–1719. 2004. View Article : Google Scholar
|
3
|
Chereshnev I, Trogan E, Omerhodzic S,
Itskovich V, Aguinaldo JG, Fayad ZA, Fisher EA and Reis ED: Mouse
model of heterotopic aortic arch transplantation. J Surg Res.
111:171–176. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Reis ED, Li J, Fayad ZA, Rong JX, Hansoty
D, Aguinaldo JG, Fallon JT and Fisher EA: Dramatic remodeling of
advanced atherosclerotic plaques of the apolipoprotein E-deficient
mouse in a novel transplantation model. J Vasc Surg. 34:541–547.
2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Llodrá J, Angeli V, Liu J, Trogan E,
Fisher EA and Randolph GJ: Emigration of monocyte-derived cells
from atherosclerotic lesions characterizes regressive, but not
progressive, plaques. Proc Natl Acad Sci USA. 101:11779–11784.
2004.
|
6
|
Trogan E, Feig JE, Dogan S, Rothblat GH,
Angeli V, Tacke F, Randolph GJ and Fisher EA: Gene expression
changes in foam cells and the role of chemokine receptor CCR7
during atherosclerosis regression in ApoE-deficient mice. Proc Natl
Acad Sci USA. 103:3781–3786. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Baker RG, Hayden MS and Ghosh S: NF-κB,
inflammation, and metabolic disease. Cell Metab. 13:11–22.
2011.
|
8
|
Kanters E, Gijbels MJ, van der Made I,
Vergouwe MN, Heeringa P, Kraal G, Hofker MH and de Winther MP:
Hematopoietic NF-kappaB1 deficiency results in small
atherosclerotic lesions with an inflammatory phenotype. Blood.
103:934–940. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Koubova J and Guarente L: How does calorie
restriction work? Genes Dev. 17:313–321. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Redman LM and Ravussin E: Caloric
restriction in humans: impact on physiological, psychological and
behavioral outcomes. Antioxid Redox Signal. 14:275–287. 2011.
View Article : Google Scholar
|
11
|
Qiu X, Brown KV, Moran Y and Chen D:
Sirtuin regulation in calorie restriction. Biochim Biophys Acta.
1804:1576–1583. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bordone L, Cohen D, Robinson A, Motta MC,
van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W and
Guarente L: SIRT1 transgenic mice show phenotypes resembling
calorie restriction. Aging Cell. 6:759–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Stein S and Matter CM: Protective roles of
SIRT1 in atherosclerosis. Cell Cycle. 10:640–647. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu W, Fu YC, Chen CJ, Wang X and Wang W:
SIRT1: a novel target to prevent atherosclerosis. J Cell Biochem.
108:10–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li X, Zhang S, Blander G, Tse JG, Krieger
M and Guarente L: SIRT1 deacetylates and positively regulates the
nuclear receptor LXR. Mol Cell. 28:91–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pfluger PT, Herranz D, Velasco-Miguel S,
Serrano M and Tschöp MH: Sirt1 protects against high-fat
diet-induced metabolic damage. Proc Natl Acad Sci USA.
105:9793–9798. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Purushotham A, Schug TT, Xu Q, Surapureddi
S, Guo X and Li X: Hepatocyte-specific deletion of SIRT1 alters
fatty acid metabolism and results in hepatic steatosis and
inflammation. Cell Metab. 9:327–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ramírez-Zacarías JL, Castro-Muñozledo F
and Kuri-Harcuch W: Quantitation of adipose conversion and
triglycerides by staining intracytoplasmic lipids with Oil red O.
Histochemistry. 97:493–497. 1992.PubMed/NCBI
|
19
|
Vock C, Gleissner M, Klapper M and Döring
F: Identification of palmitate-regulated genes in HepG2 cells by
applying microarray analysis. Biochim Biophys Acta. 1770:1283–1288.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
de Kreutzenberg SV, Ceolotto G, Papparella
I, Bortoluzzi A, Semplicini A, Dalla Man C, Cobelli C, Fadini GP
and Avogaro A: Downregulation of the longevity-associated protein
sirtuin 1 in insulin resistance and metabolic syndrome: potential
biochemical mechanisms. Diabetes. 59:1006–1015. 2010.PubMed/NCBI
|
21
|
Steinberg D: Atherogenesis in perspective:
hypercholesterolemia and inflammation as partners in crime. Nat
Med. 8:1211–1217. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Milne JC, Lambert PD, Schenk S, Carney DP,
Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie
R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H,
Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA,
Olefsky JM, Jirousek MR, Elliott PJ and Westphal CH: Small molecule
activators of SIRT1 as therapeutics for the treatment of type 2
diabetes. Nature. 450:712–716. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bitterman KJ, Anderson RM, Cohen HY,
Latorre-Esteves M and Sinclair DA: Inhibition of silencing and
accelerated aging by nicotinamide, a putative negative regulator of
yeast sir2 and human SIRT1. J Biol Chem. 277:45099–45107. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Stein S, Lohmann C, Schäfer N, Hofmann J,
Rohrer L, Besler C, Rothgiesser KM, Becher B, Hottiger MO, Borén J,
McBurney MW, Landmesser U, Lüscher TF and Matter CM: SIRT1
decreases Lox-1-mediated foam cell formation in atherogenesis. Eur
Heart J. 31:2301–2309. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Song R, Xu W, Chen Y, Li Z, Zeng Y and Fu
Y: The expression of Sirtuins 1 and 4 in peripheral blood
leukocytes from patients with type 2 diabetes. Eur J Histochem.
55:e102011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lavu S, Boss O, Elliott PJ and Lambert PD:
Sirtuins - novel therapeutic targets to treat age-associated
diseases. Nat Rev Drug Discov. 7:841–853. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nomiyama T and Bruemmer D: Liver X
receptors as therapeutic targets in metabolism and atherosclerosis.
Curr Atheroscler Rep. 10:88–95. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yeung F, Hoberg JE, Ramsey CS, Keller MD,
Jones DR, Frye RA and Mayo MW: Modulation of NF-kappaB-dependent
transcription and cell survival by the SIRT1 deacetylase. EMBO J.
23:2369–2380. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schug TT, Xu Q, Gao H, Peres-da-Silva A,
Draper DW, Fessler MB, Purushotham A and Li X: Myeloid deletion of
SIRT1 induces inflammatory signaling in response to environmental
stress. Mol Cell Biol. 30:4712–4721. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yoshizaki T, Schenk S, Imamura T,
Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C,
Bandyopadhyay G and Olefsky JM: SIRT1 inhibits inflammatory
pathways in macrophages and modulates insulin sensitivity. Am J
Physiol Endocrinol Metab. 298:E419–E428. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ross R: Atherosclerosis is an inflammatory
disease. Am Heart J. 138:S419–S420. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Brand K, Page S, Rogler G, Bartsch A,
Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA and
Neumeier D: Activated transcription factor nuclear factor-kappa B
is present in the atherosclerotic lesion. J Clin Invest.
97:1715–1722. 1996. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gareus R, Kotsaki E, Xanthoulea S, van der
Made I, Gijbels MJ, Kardakaris R, Polykratis A, Kollias G, de
Winther MP and Pasparakis M: Endothelial cell-specific NF-kappaB
inhibition protects mice from atherosclerosis. Cell Metab.
8:372–383. 2008. View Article : Google Scholar : PubMed/NCBI
|