1
|
Murphy DG, DeCarli C, McIntosh AR, Daly E,
Mentis MJ, Pietrini P, et al: Sex differences in human brain
morphometry and metabolism: an in vivo quantitative magnetic
resonance imaging and positron emission tomography study on the
effect of aging. Arch Gen Psychiatry. 53:585–594. 1996. View Article : Google Scholar
|
2
|
Goldstein JM, Seidman LJ, Horton NJ,
Makris N, Kennedy DN, Caviness VS Jr, et al: Normal sexual
dimorphism of the adult human brain assessed by in vivo magnetic
resonance imaging. Cereb Cortex. 11:490–497. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
De Vries GJ: Minireview: Sex differences
in adult and developing brains: compensation, compensation,
compensation. Endocrinology. 145:1063–1068. 2004.PubMed/NCBI
|
4
|
Harrison PJ and Tunbridge EM:
Catechol-O-methyltransferase (COMT): a gene contributing to sex
differences in brain function, and to sexual dimorphism in the
predisposition to psychiatric disorders. Neuropsychopharmacology.
33:3037–3045. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Barnett JH, Heron J, Ring SM, Golding J,
Goldman D, Xu K and Jones PB: Gender-specific effects of the
catechol-O-methyltransferase Val108/158Met polymorphism on
cognitive function in children. Am J Psychiatry. 164:142–149.
2007.PubMed/NCBI
|
6
|
O'Hara R, Miller E, Liao CP, Way N, Lin X
and Hallmayer J: COMT genotype, gender and cognition in
community-dwelling, older adults. Neurosci Lett. 409:205–209. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Herlitz A, Nilsson LG and Bäckman L:
Gender differences in episodic memory. Mem Cognit. 25:801–811.
1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
van Exel E, Gussekloo J, de Craen AJ,
Bootsma-van der Wiel A, Houx P, Knook DL and Westendorp RG:
Cognitive function in the oldest old: women perform better than
men. J Neurol Neurosurg Psychiatry. 71:29–32. 2001.
|
9
|
Halari R, Hines M, Kumari V, Mehrotra R,
Wheeler M, Ng V and Sharma T: Sex differences and individual
differences in cognitive performance and their relationship to
endogenous gonadal hormones and gonadotropins. Behav Neurosci.
119:104–117. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
van Hooren SA, Valentijn AM, Bosma H,
Ponds RW, van Boxtel MP and Jolles J: Cognitive functioning in
healthy older adults aged 64–81: a cohort study into the effects of
age, sex, and education. Neuropsychol Dev Cogn B Aging Neuropsychol
Cogn. 14:40–54. 2007.
|
11
|
Chen J, Lipska BK, Halim N, Ma QD,
Matsumoto M, Melhem S, et al: Functional analysis of genetic
variation in catechol-O-methyltransferase (COMT): effects on mRNA,
protein, and enzyme activity in postmortem human brain. Am J Hum
Genet. 75:807–821. 2004. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Wayment HK, Schenk JO and Sorg BA:
Characterization of extracellular dopamine clearance in the medial
prefrontal cortex: role of monoamine uptake and monoamine oxidase
inhibition. J Neurosci. 21:35–44. 2001.PubMed/NCBI
|
13
|
Gogos JA, Morgan M, Luine V, Santha M,
Ogawa S, Pfaff D and Karayioegou M:
Catechol-O-methyltransferase-deficient mice exhibit sexually
dimorphic changes in catecholamine levels and behavior. Proc Natl
Acad Sci USA. 95:9991–9996. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bray NJ, Buckland PR, Williams NM,
Williams HJ, Norton N, Owen MJ and O'Donovan MC: A haplotype
implicated in schizophrenia susceptibility is associated with
reduced COMT expression in human brain. Am J Hum Genet. 73:152–161.
2003. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Tunbridge E, Burnet PW, Sodhi MS and
Harrison PJ: Catechol-o-methyltransferase (COMT) and proline
dehydrogenase (PRODH) mRNAs in the dorsolateral prefrontal cortex
in schizophrenia, bipolar disorder, and major depression. Synapse.
51:112–118. 2004. View Article : Google Scholar
|
16
|
Dempster EL, Mill J, Craig IW and Collier
DA: The quantification of COMT mRNA in post mortem cerebellum
tissue: diagnosis, genotype, methylation and expression. BMC Med
Genet. 7:102006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tunbridge EM, Lane TA and Harrison PJ:
Expression of multiple catechol-o-methyltransferase (COMT) mRNA
variants in human brain. Am J Med Genet B Neuropsychiatr Genet.
144B:834–839. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tunbridge EM, Harrison PJ and Weinberger
DR: Catechol-o-methyltransferase, cognition, and psychosis:
Val158Met and beyond. Biol Psychiatry. 60:141–151. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Boudíková B, Szumlanski C, Maidak B and
Weinshilboum R: Human liver catechol-O-methyltransferase
pharmacogenetics. Clin Pharmacol Ther. 48:381–389. 1990.
|
20
|
Fähndrich E, Coper H, Christ W, Helmchen
H, Müller-Oerlinghausen B and Pietzcker A: Erythrocyte
COMT-activity in patients with affective disorders. Acta Psychiatr
Scand. 61:427–437. 1980.
|
21
|
Floderus Y and Wetterberg L: The
inheritance of human erythrocyte catechol-O-methyltransferase
activity. Clin Genet. 19:392–395. 1981. View Article : Google Scholar : PubMed/NCBI
|
22
|
Philippu G, Hoo JJ, Milech U, Argarwall
DP, Schrappe O and Goedde HW: Catechol-O-methyltransferase of
erythrocytes in patients with endogenous psychoses. Psychiatry Res.
4:139–146. 1981. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fitzgerald GA, Hamilton CA, Jones DH and
Reid JL: Erythrocytes catechol-O-methyltransferase activity and
indices of sympathetic activity in man. Clin Sci (Lond).
58:423–425. 1980.PubMed/NCBI
|
24
|
Lachman HM, Papolos DF, Saito T, Yu YM,
Szumlanski CL and Weinshilboum RM: Human
catechol-O-methyltransferase pharmacogenetics: description of a
functional polymorphism and its potential application to
neuropsychiatric disorders. Pharmacogenetics. 6:243–250. 1996.
View Article : Google Scholar
|
25
|
Weinshilboum RM, Otterness DM and
Szumlanski CL: Methylation pharmacogenetics: catechol
O-methyltransferase, thiopurine methyltransferase, and histamine
N-methyltransferase. Annu Rev Pharmacol Toxicol. 39:19–52. 1999.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Egan MF, Goldberg TE, Kolachana BS,
Callicott JH, Mazzanti CM, Straub RE, et al: Effect of COMT
Val108/158 Met genotype on frontal lobe function and risk for
schizophrenia. Proc Natl Acad Sci USA. 98:6917–6922. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Joober R, Gauthier J, Lal S, Bloom D,
Lalonde P, Rouleau G, et al: Catechol-O-methyltransferase
Val-108/158-Met gene variants associated with performance on the
Wisconsin Card Sorting Test. Arch Gen Psychiatry. 59:662–663. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bilder RM, Volavka J, Lachman HM and Grace
AA: The catechol-O-methyltransferase polymorphism: relations to the
tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes.
Neuropsychopharmacology. 29:1943–1961. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Diamond A, Briand L, Fossella J and
Gehlbach L: Genetic and neurochemical modulation of prefrontal
cognitive functions in children. Am J Psychiatry. 161:125–132.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Meyer-Lindenberg A, Nichols T, Callicott
JH, Ding J, Kolachana B, Buckholtz J, et al: Impact of complex
genetic variation in COMT on human brain function. Mol Psychiatry.
11:867–877. 7972006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mehta MA, Owen AM, Sahakian BJ, Mavaddat
N, Pickard JD and Robbins TW: Methylphenidate enhances working
memory by modulating discrete frontal and parietal lobe regions in
the human brain. J Neurosci. 20:RC652000.PubMed/NCBI
|
32
|
Goldman-Rakic PS, Castner SA, Svensson TH,
Siever LJ and Williams GV: Targeting the dopamine D1 receptor in
schizophrenia: insights for cognitive dysfunction.
Psychopharmacology (Berl). 174:3–16. 2004.PubMed/NCBI
|
33
|
Caldú X, Vendrell P, Bartrés-Faz D,
Clemente I, Bargalló N, Jurado MA, et al: Impact of the COMT
Val108/158 Met and DAT genotypes on prefrontal function in healthy
subjects. Neuroimage. 37:1437–1444. 2007.PubMed/NCBI
|
34
|
Bruder GE, Keilp JG, Xu H, Shikhman M,
Schori E, Gorman JM and Gilliam TC: Catechol-O-methyltransferase
(COMT) genotypes and working memory: associations with differing
cognitive operations. Biol Psychiatry. 58:901–907. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
de Frias CM, Annerbrink K, Westberg L,
Eriksson E, Adolfsson R and Nilsson LG: COMT gene polymorphism is
associated with declarative memory in adulthood and old age. Behav
Genet. 34:533–539. 2004.PubMed/NCBI
|
36
|
de Frias CM, Annerbrink K, Westberg L,
Eriksson E, Adolfsson R and Nilsson LG: Catechol
O-methyltransferase Val158Met polymorphism is associated with
cognitive performance in nondemented adults. J Cogn Neurosci.
17:1018–1025. 2005.PubMed/NCBI
|
37
|
Barnett JH, Scoriels L and Munafò MR:
Meta-analysis of the cognitive effects of the
catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol
Psychiatry. 64:137–144. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dennis NA, Need AC, LaBar KS,
Waters-Metenier S, Cirulli ET, Kragel J, et al: COMT val108/158 met
genotype affects neural but not cognitive processing in healthy
individuals. Cereb Cortex. 20:672–683. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Solís-Ortiz S, Pérez-Luque E,
Morado-Crespo L and Gutiérrez-Muñoz M: Executive functions and
selective attention are favored in middle-aged healthy women
carriers of the Val/Val genotype of the
catechol-o-methyltransferase gene: a behavioral genetic study.
Behav Brain Funct. 6:672010.PubMed/NCBI
|
40
|
Soeiro de Souza MG, Machado-Vieira R,
Soares Bio D, Do Prado CM and Moreno RA: COMT polymorphisms as
predictors of cognitive dysfunction during manic and mixed episodes
in bipolar I disorder. Bipolar Disord. 14:554–564. 2012.PubMed/NCBI
|
41
|
Zahrt J, Taylor JR, Mathew RG and Arnsten
AF: Supranormal stimulation of D1 dopamine receptors in the rodent
prefrontal cortex impairs spatial working memory performance. J
Neurosci. 17:8528–8535. 1997.PubMed/NCBI
|
42
|
Granon S, Passetti F, Thomas KL, Dalley
JW, Everitt BJ and Robbins TW: Enhanced and impaired attentional
performance after infusion of D1 dopaminergic receptor agents into
rat prefrontal cortex. J Neurosci. 20:1208–1215. 2000.PubMed/NCBI
|
43
|
Arnsten AFT and Li BM: Neurobiology of
executive functions: catecholamine influences on prefrontal
cortical functions. Biol Psychiatry. 57:1377–1384. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sheehan DV, Lecrubier Y, Sheehan KH,
Amorim P, Janavs J, Weiller E, et al: The Mini-International
Neuropsychiatric Interview (M.I.N.I.): the development and
validation of a structured diagnostic psychiatric interview for
DSM-IV and ICD-10. J Clin Psychiatry. 59(Suppl 20): 22–33; quiz
34–57. 1998.PubMed/NCBI
|
45
|
Strauss E, Sherman EMS and Spreen O: A
Compendium of Neuropsychological Tests: Administration, Norms and
Commentary. 3rd edition. Oxford University Press, Inc; New York,
NY: 2006
|
46
|
Wechsler D: Wechsler Abbreviated Scale of
Intelligence. The Psychological Corporation: Harcourt Brace and
Company; New York, NY: 1999
|
47
|
Wechsler D: Wechsler Adult Intelligence
Scale-Revised. The Psychological Corporation; San Antonio, TX:
1981
|
48
|
Lezak MD: Neuropsychological Assessment.
Oxford University Press, Inc; New York, NY: 2004
|
49
|
Laitinen J, Samarut J and Hölttä E: A
nontoxic and versatile protein salting-out method for isolation of
DNA. Biotechniques. 17:316318320–322. 1994.PubMed/NCBI
|
50
|
Clark L, Cools R and Robbins TW: The
neuropsychology of ventral prefrontal cortex: decision-making and
reversal learning. Brain Cogn. 55:41–53. 2004. View Article : Google Scholar
|
51
|
Kimberg DY, D'Esposito M and Farah MJ:
Effects of bromocriptine on human subjects depend on working memory
capacity. Neuroreport. 8:3581–3585. 1997. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mattay VS, Goldberg TE, Fera F, Hariri AR,
Tessitore A, Egan F, et al: Catechol O-methyltransferase val158-met
genotype and individual variation in the brain response to
amphetamine. Proc Natl Acad Sci USA. 100:6186–6191. 2003.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Sprague RL and Sleator EK: Methylphenidate
in hyperkinetic children: differences in dose effects on learning
and social behavior. Science. 198:1274–1276. 1977. View Article : Google Scholar : PubMed/NCBI
|
54
|
Cousins DA, Butts K and Young AH: The role
of dopamine in bipolar disorder. Bipolar Disord. 11:787–806. 2009.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Jiang H, Xie T, Ramsden DB and Ho SL:
Human catechol-O-methyltransferase down-regulation by estradiol.
Neuropharmacology. 45:1011–1018. 2003. View Article : Google Scholar : PubMed/NCBI
|
56
|
Cohn CK and Axelrod J: The effect of
estradiol on catechol-O-methyltransferase activity in rat liver.
Life Sci I. 10:1351–1354. 1971. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lindamer LA, Lohr JB, Harris MJ and Jeste
DV: Gender, estrogen, and schizophrenia. Psychopharmacol Bull.
33:221–228. 1997.PubMed/NCBI
|
58
|
Halbreich U: Role of estrogen in
postmenopausal depression. Neurology. 48(Suppl 7): S16–S19. 1997.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Colzato LS, Hertsig G, van den Wildenberg
WP and Hommel B: Estrogen modulates inhibitory control in healthy
human females: evidence from the stop-signal paradigm.
Neuroscience. 167:709–715. 2010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Gasbarri A, Pompili A, d'Onofrio A,
Cifariello A, Tavares MC and Tomaz C: Working memory for emotional
facial expressions: role of the estrogen in young women.
Psychoneuroendocrinology. 33:964–972. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Andrewes D: Neuropsychology From Theory to
Practice. Psychology Press; New York, NY: 2001
|
62
|
Devinsky O and D'Esposito M: Neurology of
Cognitive and Behavioral Disorders. Oxford University Press; New
York, NY: 2004
|
63
|
Darby D and Walsh KW: Walsh's
Neuropsychology: A Clinical Approach. 5th edition. Elsevier
Churchill Livingstone; Edinburgh: 2005
|
64
|
Ruff RM, Light RH, Parker SB and Levin HS:
Benton Controlled Oral Word Association Test: reliability and
updated norms. Arch Clin Neuropsychol. 11:329–338. 1996. View Article : Google Scholar : PubMed/NCBI
|
65
|
Henry JD and Beatty WW: Verbal fluency
deficits in multiple sclerosis. Neuropsychologia. 44:1166–1174.
2006. View Article : Google Scholar : PubMed/NCBI
|
66
|
Bolla KI, Lindgren KN, Bonaccorsy C and
Bleecker ML: Predictors of verbal fluency (FAS) in the healthy
elderly. J Clin Psychol. 46:623–628. 1990. View Article : Google Scholar : PubMed/NCBI
|
67
|
Selnes OA, Jacobson L, Machado AM, Becker
JT, Wesch J, Miller EN, et al: Normative data for a brief
neuropsychological screening battery. Multicenter AIDS Cohort
Study. Percept Mot Skills. 73:539–550. 1991. View Article : Google Scholar : PubMed/NCBI
|
68
|
Libon D, David J, Glosser G, Malamut BL,
Kaplan E, Goldberg E, et al: Age, executive functions, and
visuospatial functioning in healthy older adults. Neuropsychology.
8:38–43. 1994. View Article : Google Scholar
|
69
|
Tombaugh TN, Kozak J and Rees L: Normative
data stratified by age and education for two measures of verbal
fluency: FAS and animal naming. Arch Clin Neuropsychol. 14:167–177.
1999.PubMed/NCBI
|
70
|
Ruff RM, Allen CC, Farrow CE, Niemann H
and Wylie T: Figural fluency: differential impairment in patients
with left versus right frontal lobe lesions. Arch Clin
Neuropsychol. 9:41–55. 1994. View Article : Google Scholar
|
71
|
Miller BL and Cummings JL: The Human
Frontal Lobes: Functions and Disorders. 2nd edition. The Guilford
Press; New York, NY: 2007
|