Role of microRNAs in chronic lymphocytic leukemia (Review)
- Authors:
- Xiang-Xiang Zhou
- Xin Wang
-
Affiliations: Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China - Published online on: July 23, 2013 https://doi.org/10.3892/mmr.2013.1599
- Pages: 719-725
This article is mentioned in:
Abstract
Dores GM, Anderson WF, Curtis RE, et al: Chronic lymphocytic leukaemia and small lymphocytic lymphoma: overview of the descriptive epidemiology. Br J Haematol. 139:809–819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsimberidou AM and Keating MJ: Richter syndrome: biology, incidence, and therapeutic strategies. Cancer. 103:216–228. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. | |
Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hutvágner G and Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science. 297:2056–2060. 2002.PubMed/NCBI | |
Bartels CL and Tsongalis GJ: MicroRNAs: novel biomarkers for human cancer. Clin Chem. 55:623–631. 2009. View Article : Google Scholar : PubMed/NCBI | |
Joshi D, Gosh K and Vundinti BR: MicroRNAs in hematological malignancies: a novel approach to targeted therapy. Hematology. 17:170–175. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dohner H, Stilgenbauer S, Benner A, et al: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 343:1910–1916. 2000. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Dumitru CD, Shimizu M, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lia M, Carette A, Tang H, et al: Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood. 119:2981–2990. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Fu H, Sun F, et al: miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36:5391–5404. 2008. View Article : Google Scholar : PubMed/NCBI | |
Balatti V, Bottoni A, Palamarchuk A, et al: NOTCH1 mutations in CLL associated with trisomy 12. Blood. 119:329–331. 2012. View Article : Google Scholar : PubMed/NCBI | |
López C, Delgado J, Costa D, et al: Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations. Genes Chromosomes Cancer. 51:881–889. 2012.PubMed/NCBI | |
Fragoso R, Mao T, Wang S, et al: Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet. 8:e10028552012. View Article : Google Scholar : PubMed/NCBI | |
Gusscott S, Kuchenbauer F, Humphries RK and Weng AP: Notch-mediated repression of miR-223 contributes to IGF1R regulation in T-ALL. Leuk Res. 36:905–911. 2012. View Article : Google Scholar : PubMed/NCBI | |
Austen B, Powell JE, Alvi A, et al: Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood. 106:3175–3182. 2005. View Article : Google Scholar : PubMed/NCBI | |
Skowronska A, Parker A, Ahmed G, et al: Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J Clin Oncol. 30:4524–4532. 2012. View Article : Google Scholar | |
Zhang X, Wan G, Berger FG, He X and Lu X: The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell. 41:371–383. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu Y, Tsuyada A, et al: Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 30:1470–1480. 2011. | |
Auer RL, Riaz S and Cotter FE: The 13q and 11q B-cell chronic lymphocytic leukaemia-associated regions derive from a common ancestral region in the zebrafish. Br J Haematol. 137:443–453. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez D, Martinez P, Wade R, et al: Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 29:2223–2229. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mraz M, Pospisilova S, Malinova K, Slapak I and Mayer J: MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma. 50:506–509. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koralov SB, Muljo SA, Galler GR, et al: Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 132:860–874. 2008. View Article : Google Scholar : PubMed/NCBI | |
O’Connell RM, Rao DS, Chaudhuri AA and Baltimore D: Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 10:111–122. 2010.PubMed/NCBI | |
Zhou B, Wang S, Mayr C, Bartel DP and Lodish HF: miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA. 104:7080–7085. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xiao C, Calado DP, Galler G, et al: MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 131:146–159. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xiao C, Srinivasan L, Calado DP, et al: Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 9:405–414. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ventura A, Young AG, Winslow MM, et al: Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 132:875–886. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Yébenes VG, Belver L, Pisano DG, et al: miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med. 205:2199–2206. 2008.PubMed/NCBI | |
Zhang J, Jima DD, Jacobs C, et al: Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood. 113:4586–4594. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fernando TR, Rodriguez-Malave NI and Rao DS: MicroRNAs in B cell development and malignancy. J Hematol Oncol. 5:72012. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez A, Vigorito E, Clare S, et al: Requirement of bic/microRNA-155 for normal immune function. Science. 316:608–611. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thai TH, Calado DP, Casola S, et al: Regulation of the germinal center response by microRNA-155. Science. 316:604–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rao DS, O’Connell RM, Chaudhuri AA, Garcia-Flores Y, Geiger TL and Baltimore D: MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity. 33:48–59. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ge X and Wang X: Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol. 3:332010. View Article : Google Scholar : PubMed/NCBI | |
Seke Etet PF, Vecchio L and Nwabo Kamdje AH: Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways? Cell Signal. 24:1433–1443. 2012.PubMed/NCBI | |
Lu D, Zhao Y, Tawatao R, et al: Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 101:3118–3123. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gandhirajan RK, Staib PA, Minke K, et al: Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 12:326–335. 2010.PubMed/NCBI | |
Valastyan S, Reinhardt F, Benaich N, et al: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S and Lee B: MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood. 114:404–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lou Y, Yang X, Wang F, Cui Z and Huang Y: MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med. 26:819–827. 2010.PubMed/NCBI | |
Rossi S, Shimizu M, Barbarotto E, et al: microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 116:945–952. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kapinas K, Kessler C, Ricks T, Gronowicz G and Delany AM: miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem. 285:25221–25231. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Zhang JX, Han L, You YP, Jiang T, Pu PY and Kang CS: MicroRNA roles in beta-catenin pathway. Mol Cancer. 9:2522010. View Article : Google Scholar : PubMed/NCBI | |
Rassenti LZ, Huynh L, Toy TL, et al: ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 351:893–901. 2004. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Ferracin M, Cimmino A, et al: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005. View Article : Google Scholar : PubMed/NCBI | |
Moussay E, Wang K, Cho JH, et al: MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 108:6573–6578. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bomben R, Gobessi S, Dal Bo M, et al: The miR-17~92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia. 26:1584–1593. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zenz T, Eichhorst B, Busch R, et al: TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 28:4473–4479. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Bottoni A, Shimizu M, et al: Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 305:59–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mraz M, Malinova K, Kotaskova J, et al: miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia. 23:1159–1163. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leong KG and Karsan A: Recent insights into the role of Notch signaling in tumorigenesis. Blood. 107:2223–2233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fabbri G, Rasi S, Rossi D, et al: Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 208:1389–1401. 2011. View Article : Google Scholar : PubMed/NCBI | |
Puente XS, Pinyol M, Quesada V, et al: Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 475:101–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rossi D, Rasi S, Fabbri G, et al: Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 119:521–529. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cichocki F, Felices M, McCullar V, Presnell SR, Al-Attar A, Lutz CT and Miller JS: Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol. 187:6171–6175. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li X, Sanda T, Look AT, Novina CD and von Boehmer H: Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med. 208:663–675. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mansouri L, Cahill N, Gunnarsson R, et al: NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia. 27:512–514. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hallek M, Cheson BD, Catovsky D, et al: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 111:5446–5456. 2008. View Article : Google Scholar | |
Zenz T, Mohr J, Edelmann J, et al: Treatment resistance in chronic lymphocytic leukemia: the role of the p53 pathway. Leuk Lymphoma. 50:510–513. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zenz T, Mohr J, Eldering E, et al: miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 113:3801–3808. 2009. View Article : Google Scholar : PubMed/NCBI | |
Asslaber D, Piñón JD, Seyfried I, et al: microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood. 115:4191–4197. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bond GL, Hu W, Bond EE, et al: A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 119:591–602. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moussay E, Palissot V, Vallar L, et al: Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer. 9:1152010. View Article : Google Scholar : PubMed/NCBI | |
Zhu DX, Zhu W, Fang C, et al: miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 33:1294–1301. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ferracin M, Zagatti B, Rizzotto L, et al: MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer. 9:1232010. View Article : Google Scholar : PubMed/NCBI |