1
|
Enzinger PC and Mayer RJ: Esophageal
cancer. N Engl J Med. 349:2241–2252. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Knisely JP, Burtness BA and Salem RR:
Surgical treatment of esophageal cancer. N Engl J Med.
348:1177–1179. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kocher HM and Tekkis PP: Surgical
treatment of esophageal cancer. N Engl J Med. 348:1177–1179. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hemminki A, Markie D, Tomlinson I, et al:
A serine/threonine kinase gene defective in Peutz-Jeghers syndrome.
Nature. 391:184–187. 1998. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Avizienyte E, Loukola A, Roth S, et al:
LKB1 somatic mutations in sporadic tumors. Am J Pathol.
154:677–681. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Avizienyte E, Roth S, Loukola A, et al:
Somatic mutations in LKB1 are rare in sporadic colorectal and
testicular tumors. Cancer Res. 58:2087–2090. 1998.PubMed/NCBI
|
7
|
Sato N, Rosty C, Jansen M, et al:
STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal
papillary-mucinous neoplasms of the pancreas. Am J Pathol.
159:2017–2022. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang ZJ, Churchman M, Campbell IG, et al:
Allele loss and mutation screen at the Peutz-Jeghers (LKB1) locus
(19p13.3) in sporadic ovarian tumours. Br J Cancer. 80:70–72. 1999.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tiainen M, Vaahtomeri K, Ylikorkala A and
Mäkelä TP: Growth arrest by the LKB1 tumor suppressor: induction of
p21(WAF1/CIP1). Hum Mol Genet. 11:1497–1504. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tiainen M, Ylikorkala A and Mäkelä TP:
Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest.
Proc Natl Acad Sci USA. 96:9248–9251. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ylikorkala A, Rossi DJ, Korsisaari N,
Luukko K, Alitalo K, Henkemeyer M and Mäkelä TP: Vascular
abnormalities and deregulation of VEGF in Lkb1-deficient mice.
Science. 293:1323–1326. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim DW, Chung HK, Park KC, et al: Tumor
suppressor LKB1 inhibits activation of signal transducer and
activator of transcription 3 (STAT3) by thyroid oncogenic tyrosine
kinase rearranged in transformation (RET)/papillary thyroid
carcinoma (PTC). Mol Endocrinol. 21:3039–3049. 2007. View Article : Google Scholar
|
13
|
Dechow TN, Pedranzini L, Leitch A, Leslie
K, Gerald WL, Linkov I and Bromberg JF: Requirement of matrix
metalloproteinase-9 for the transformation of human mammary
epithelial cells by Stat3-C. Proc Natl Acad Sci USA.
101:10602–10607. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Funamoto M, Fujio Y, Kunisada K, et al:
Signal transducer and activator of transcription 3 is required for
glycoprotein 130-mediated induction of vascular endothelial growth
factor in cardiac myocytes. J Biol Chem. 275:10561–10566. 2000.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hutt JA, O’Rourke JP and DeWille J: Signal
transducer and activator of transcription 3 activates CCAAT
enhancer-binding protein delta gene transcription in G0
growth-arrested mouse mammary epithelial cells and in involuting
mouse mammary gland. J Biol Chem. 275:29123–29131. 2000. View Article : Google Scholar
|
16
|
Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F,
Sawaya R and Huang S: Stat3 activation regulates the expression of
matrix metalloproteinase-2 and tumor invasion and metastasis.
Oncogene. 23:3550–3560. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Garcia R, Yu CL, Hudnall A, et al:
Constitutive activation of Stat3 in fibroblasts transformed by
diverse oncoproteins and in breast carcinoma cells. Cell Growth
Differ. 8:1267–1276. 1997.PubMed/NCBI
|
18
|
Gouilleux-Gruart V, Gouilleux F, Desaint
C, et al: STAT-related transcription factors are constitutively
activated in peripheral blood cells from acute leukemia patients.
Blood. 87:1692–1697. 1996.PubMed/NCBI
|
19
|
Leu CM, Wong FH, Chang C, Huang SF and Hu
CP: Interleukin-6 acts as an antiapoptotic factor in human
esophageal carcinoma cells through the activation of both STAT3 and
mitogen-activated protein kinase pathways. Oncogene. 22:7809–7818.
2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Japanese Society for Esophageal Diseases.
Guide lines for the clinical and pathologic studies on carcinoma of
the esophagus. Jpn J Surg. 6:69–78. 1976. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schmidt AI, Reismann M, Kübler JF, et al:
Exposure to carbon dioxide and helium reduces in vitro
proliferation of pediatric tumor cells. Pediatr Surg Int. 22:72–77.
2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hemminki A, Tomlinson I, Markie D, et al:
Localization of a susceptibility locus for Peutz-Jeghers syndrome
to 19p using comparative genomic hybridization and targeted linkage
analysis. Nat Genet. 15:87–90. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Resta N, Stella A, Susca FC, et al: Two
novel mutations and a new STK11/LKB1 gene isoform in Peutz-Jeghers
patients. Hum Mutat. 20:78–79. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wen Z, Zhong Z and Darnell JE Jr: Maximal
activation of transcription by Stat1 and Stat3 requires both
tyrosine and serine phosphorylation. Cell. 82:241–250. 1995.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin J, Tang H, Jin X, Jia G and Hsieh JT:
p53 regulates Stat3 phosphorylation and DNA binding activity in
human prostate cancer cells expressing constitutively active Stat3.
Oncogene. 21:3082–3088. 2002. View Article : Google Scholar : PubMed/NCBI
|