Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (Review)
- Authors:
- Chen Liang
- Ying-Yi Li
-
Affiliations: Department of Oncology, Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China - Published online on: April 11, 2014 https://doi.org/10.3892/mmr.2014.2139
- Pages: 2051-2060
This article is mentioned in:
Abstract
Cuypers HT, Selten G, Quint W, et al: Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell. 37:141–150. 1984. View Article : Google Scholar : PubMed/NCBI | |
Bachmann M and Möröy T: The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 37:726–730. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mikkers H, Nawijn M, Allen J, et al: Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol. 24:6104–6115. 2004. View Article : Google Scholar : PubMed/NCBI | |
Selten G, Cuypers HT, Boelens W, et al: The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell. 46:603–611. 1986. View Article : Google Scholar : PubMed/NCBI | |
Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ and Arthur JS: Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol. 7:12006. View Article : Google Scholar : PubMed/NCBI | |
Saris CJ, Domen J and Berns A: The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10:655–664. 1991.PubMed/NCBI | |
Morishita D, Katayama R, Sekimizu K, Tsuruo T and Fujita N: Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 68:5076–5085. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reeves R, Spies GA, Kiefer M, Barr PJ and Power M: Primary structure of the putative human oncogene, pim-1. Gene. 90:303–307. 1990. View Article : Google Scholar : PubMed/NCBI | |
Qian KC, Wang L, Hickey ER, et al: Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem. 280:6130–6137. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nawijn MC, Alendar A and Berns A: For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 11:23–34. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bullock AN, Debreczeni J, Amos AL, Knapp S and Turk BE: Structure and substrate specificity of the Pim-1 kinase. J Biol Chem. 280:41675–41682. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mukaida N, Wang YY and Li YY: Roles of Pim-3, a novel survival kinase, in tumorigenesis. Cancer Sci. 102:1437–1442. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A and Kuchino Y: Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem. 274:18659–18666. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J and Magnuson NS: Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 1593:45–55. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bachmann M, Hennemann H, Xing PX, Hoffmann I and Möröy T: The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem. 279:48319–48328. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I and Möröy T: The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 38:430–443. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nosaka T and Kitamura T: Pim-1 expression is sufficient to induce cytokine independence in murine hematopoietic cells, but is dispensable for BCR-ABL-mediated transformation. Exp Hematol. 30:697–702. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brault L, Gasser C, Bracher F, Huber K, Knapp S and Schwaller J: PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica. 95:1004–1015. 2010. View Article : Google Scholar : PubMed/NCBI | |
Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar | |
Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI | |
Calin GA and Croce CM: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66:7390–7394. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thomas M, Lange-Grünweller K, Weirauch U, et al: The proto-oncogene Pim-1 is a target of miR-33a. Oncogene. 31:918–928. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 27:91–105. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Dumitru CD, Shimizu M, et al: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bonci D, Coppola V, Musumeci M, et al: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 14:1271–1277. 2008. View Article : Google Scholar : PubMed/NCBI | |
Birg F, Courcoul M, Rosnet O, et al: Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood. 80:2584–2593. 1992.PubMed/NCBI | |
Nakao M, Yokota S, Iwai T, et al: Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 10:1911–1918. 1996.PubMed/NCBI | |
Yokota S, Kiyoi H, Nakao M, et al: Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia. 11:1605–1609. 1997. View Article : Google Scholar | |
Thiede C, Steudel C, Mohr B, et al: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 99:4326–4335. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim KT, Baird K, Ahn JY, et al: Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood. 105:1759–1767. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim KT, Baird K, Davis S, et al: Constitutive Fms-like tyrosine kinase 3 activation results in specific changes in gene expression in myeloid leukaemic cells. Br J Haematol. 138:603–615. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D and Scott RJ: MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS One. 7:e445462012. View Article : Google Scholar : PubMed/NCBI | |
Mizuki M, Fenski R, Halfter H, et al: Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 96:3907–3914. 2000. | |
Tse KF, Mukherjee G and Small D: Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia. 14:1766–1776. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa F, Towatari M, Kiyoi H, et al: Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 19:624–631. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL and Kitamura T: STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 18:4754–4765. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rayner KJ, Suárez Y, Dávalos A, et al: MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 328:1570–1573. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tian Z, Zhao JJ, Tai YT, et al: Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood. 120:3958–3967. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK and Aigner A: MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71:5214–5224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Mandel EM, Thomson JM, et al: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Ransom JF, Li A, et al: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 129:303–317. 2007. View Article : Google Scholar : PubMed/NCBI | |
Katakami N, Kaneto H, Hao H, et al: Role of pim-1 in smooth muscle cell proliferation. J Biol Chem. 279:54742–54749. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yin H, Jiang Y, et al: Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 31:368–375. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katare RG, Caporali A, Oikawa A, Meloni M, Emanueli C and Madeddu P: Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ Heart Fail. 3:294–305. 2010. View Article : Google Scholar | |
Katare R, Caporali A, Zentilin L, et al: Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res. 108:1238–1251. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mishima T, Mizuguchi Y, Kawahigashi Y and Takizawa T and Takizawa T: RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res. 1131:37–43. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sevignani C, Calin GA, Nnadi SC, et al: MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA. 104:8017–8022. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nasser MW, Datta J, Nuovo G, et al: Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 283:33394–33405. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Tong DY, Chen JN, et al: Overexpression of osteopontin, αvβ3 and Pim-1 associated with prognostically important clinicopathologic variables in non-small cell lung cancer. PloS One. 7:e485752012. | |
Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA and Skorski T: Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood. 99:4531–4539. 2002. View Article : Google Scholar : PubMed/NCBI | |
Eiring AM, Harb JG, Neviani P, et al: miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 140:652–665. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kulshreshtha R, Ferracin M, Wojcik SE, et al: A microRNA signature of hypoxia. Mol Cell Biol. 27:1859–1867. 2007. View Article : Google Scholar | |
Camps C, Buffa FM, Colella S, et al: hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 14:1340–1348. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Ding L, Bennewith KL, et al: Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 35:856–867. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kelsey JL: Breast cancer epidemiology: summary and future directions. Epidemiol Rev. 15:256–263. 1993.PubMed/NCBI | |
Horimoto Y, Hartman J, Millour J, et al: ERβ1 represses FOXM1 expression through targeting ERα to control cell proliferation in breast cancer. Am J Pathol. 179:1148–1156. 2011. | |
Malinen M, Jääskeläinen T, Pelkonen M, et al: Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors. Mol Cell Endocrinol. 365:270–276. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dumas de la Roque E, Savineau JP and Bonnet S: Dehydroepiandrosterone: A new treatment for vascular remodeling diseases including pulmonary arterial hypertension. Pharmacol Ther. 126:186–199. 2010.PubMed/NCBI | |
Paulin R, Meloche J, Jacob MH, Bisserier M, Courboulin A and Bonnet S: Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 301:H1798–H1809. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dhanasekaran SM, Barrette TR, Ghosh D, et al: Delineation of prognostic biomarkers in prostate cancer. Nature. 412:822–826. 2001. View Article : Google Scholar : PubMed/NCBI | |
Guzey M, Kitada S and Reed JC: Apoptosis induction by 1alpha,25-dihydroxyvitamin D3 in prostate cancer. Mol Cancer Ther. 1:667–677. 2002.PubMed/NCBI | |
Okamoto R, Delansorne R, Wakimoto N, et al: Inecalcitol, an analog of 1α,25(OH)(2) D(3), induces growth arrest of androgen-dependent prostate cancer cells. Int J Cancer. 130:2464–2473. 2012. | |
Ha S, Iqbal NJ, Mita P, et al: Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene. 32:3992–4000. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maier CJ, Maier RH, Rid R, et al: PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling. BMC Mol Biol. 13:182012. View Article : Google Scholar : PubMed/NCBI | |
Shand RL and Gelmann EP: Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol. 16:123–131. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roach M III: Current trends for the use of androgen deprivation therapy in conjunction with radiotherapy for patients with unfavorable intermediate-risk, high-risk, localized, and locally advanced prostate cancer. Cancer. Mar 3–2014.(Epub ahead of print). | |
Carson JP, Kulik G and Weber MJ: Antiapoptotic signaling in LNCaP prostate cancer cells: a survival signaling pathway independent of phosphatidylinositol 3′-kinase and Akt/protein kinase B. Cancer Res. 59:1449–1453. 1999. | |
Sun A, Tang J, Hong Y, et al: Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Prostate. 68:453–461. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kumar JK, Ping RY, Teong HF, Goh S and Clément MV: Activation of a non-genomic Pim-1/Bad-Pser75 module is required for an efficient pro-survival effect of Bcl-xL induced by androgen in LNCaP cells. Int J Biochem Cell Biol. 43:594–603. 2011. View Article : Google Scholar : PubMed/NCBI | |
Min X, Tang J, Wang Y, et al: PI3K-like kinases restrain Pim gene expression in endothelial cells. J Huazhong Univ Sci Technolog Med Sci. 32:17–23. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muraski JA, Rota M, Misao Y, et al: Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med. 13:1467–1475. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zippo A, De Robertis A, Bardelli M, Galvagni F and Oliviero S: Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro. Blood. 103:4536–4544. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stout BA, Bates ME, Liu LY, Farrington NN and Bertics PJ: IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol. 173:6409–6417. 2004. View Article : Google Scholar : PubMed/NCBI | |
Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH and Braun-Dullaeus RC: Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol. 105:267–277. 2010. View Article : Google Scholar : PubMed/NCBI | |
Block KM, Hanke NT, Maine EA and Baker AF: IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas. 41:773–781. 2012.PubMed/NCBI | |
Jacobs MD, Black J, Futer O, et al: Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J Biol Chem. 280:13728–13734. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gavara L, Suchaud V, Nauton L, Théry V, Anizon F and Moreau P: Identification of pyrrolo[2,3-g]indazoles as new Pim kinase inhibitors. Bioorg Med Chem Lett. 23:2298–2301. 2013. | |
Blanco-Aparicio C and Carnero A: Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol. 85:629–643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mumenthaler SM, Ng PY, Hodge A, et al: Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes. Mol Cancer Ther. 8:2882–2893. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen LS, Redkar S, Taverna P, Cortes JE and Gandhi V: Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood. 118:693–702. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Chen LS, Neelapu SS, Miranda RN, Medeiros LJ and Gandhi V: Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma. Blood. 120:3491–3500. 2012. View Article : Google Scholar : PubMed/NCBI | |
Batra V, Maris JM, Kang MH, et al: Initial testing (stage 1) of SGI-1776, a PIM1 kinase inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer. 59:749–752. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen LS, Redkar S, Bearss D, Wierda WG and Gandhi V: Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood. 114:4150–4157. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang M, Kanwar N, Feng E, et al: PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation. Mol Cancer Ther. 9:2478–2487. 2010. View Article : Google Scholar : PubMed/NCBI | |
Siu A, Virtanen C and Jongstra J: PIM kinase isoform specific regulation of MIG6 expression and EGFR signaling in prostate cancer cells. Oncotarget. 2:1134–1144. 2011.PubMed/NCBI | |
Xie Y, Burcu M, Linn DE, Qiu Y and Baer MR: Pim-1 kinase protects P-glycoprotein from degradation and enables its glycosylation and cell surface expression. Mol Pharmacol. 78:310–318. 2010. View Article : Google Scholar : PubMed/NCBI | |
Natarajan K, Bhullar J, Shukla S, et al: The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem Pharmacol. 85:514–524. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kelly KR, Espitia CM, Taverna P, et al: Targeting PIM kinase activity significantly augments the efficacy of cytarabine. Br J Haematol. 156:129–132. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pogacic V, Bullock AN, Fedorov O, et al: Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res. 67:6916–6924. 2007.PubMed/NCBI | |
Holder S, Zemskova M, Zhang C, et al: Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase. Mol Cancer Ther. 6:163–172. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jie W, He QY, Luo BT, et al: Inhibition of Pim-1 attenuates the proliferation and migration in nasopharyngeal carcinoma cells. Asian Pac J Trop Med. 5:645–650. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akué-Gédu R, Rossignol E, Azzaro S, et al: Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors. J Med Chem. 52:6369–6381. 2009.PubMed/NCBI | |
Santio NM, Vahakoski RL, Rainio EM, et al: Pim-selective inhibitor DHPCC-9 reveals Pim kinases as potent stimulators of cancer cell migration and invasion. Mol Cancer. 9:2792010. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Tintori C, Christopher RS, et al: A combination strategy to inhibit Pim-1: synergism between noncompetitive and ATP-competitive inhibitors. ChemMedChem. 8:484–496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grundler R, Brault L, Gasser C, et al: Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med. 206:1957–1970. 2009. View Article : Google Scholar : PubMed/NCBI |