1
|
Morton NE: Genetic epidemiology of hearing
impairment. Ann NY Acad Sci. 630:16–31. 1991. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang QJ, Zhao YL, Rao SQ, Guo YF, He Y,
Lan L, et al: Newborn hearing concurrent gene screening can improve
care for hearing loss: a study on 14,913 Chinese newborns. Int J
Pediatr Otorhinolaryngol. 75:535–542. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dai P, Liu X, Yu F, Zhu QW, Yuan YY, Yang
SZ, et al: Molecular etiology of patients with nonsyndromic hearing
loss from deaf-mute schools in 18 provinces of China. Chinese J
Otol. 1:1–5. 2006.
|
4
|
Smith RJ, Bale JF Jr and White KR:
Sensorineural hearing loss in children. Lancet. 365:879–890. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kenneson A, Van Naarden Braun K and Boyle
C: GJB2 (connexin 26) variants and nonsyndromic sensorineural
hearing loss: a HuGE review. Genet Med. 4:258–274. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yuan Y, You Y, Huang D, Cui J, Wang Y,
Wang Q, et al: Comprehensive molecular etiology analysis of
nonsyndromic hearing impairment from typical areas in China. J
Transl Med. 7:792009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Goodenough DA, Goliger JA and Paul DL:
Connexins, connexons, and intercellular communication. Annu Rev
Biochem. 65:475–502. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bruzzone R, White TW and Paul DL:
Connections with connexins: the molecular basis of direct
intercellular signaling. Eur J Biochem. 238:1–27. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Simon AM and Goodenough DA: Diverse
functions of vertebrate gap junctions. Trends Cell Biol. 8:477–483.
1998. View Article : Google Scholar
|
10
|
Wangemann P: K+ cycling and the
endocochlear potential. Hear Res. 165:1–9. 2002.
|
11
|
Kikuchi T, Kimura RS, Paul DL, Takasaka T
and Adams JC: Gap junction systems in the mammalian cochlea. Brain
Res Brain Res Rev. 32:163–166. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
The Connexin-Deafness Homepage. http://davinci.crg.es/deafness.
Accessed August 20, 2013
|
13
|
Gabriel H, Kupsch P, Sudendey J,
Winterhager E, Jahnke K and Lautermann J: Mutations in the
connexin26/GJB2 gene are the most common event in non-syndromic
hearing loss among the German population. Hum Mutat. 17:521–522.
2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Morell RJ, Kim HJ, Hood LJ, Goforth L,
Friderici K, Fisher R, et al: Mutations in the connexin 26 gene
(GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N
Engl J Med. 339:1500–1505. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dai P, Yu F, Han B, Liu X, Wang G, Li Q,
et al: GJB2 mutation spectrum in 2,063 Chinese patients with
nonsyndromic hearing impairment. J Transl Med. 7:262009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu XZ, Yuan Y, Yan D, Ding EH, Ouyang XM,
Fei Y, et al: Digenic inheritance of non-syndromic deafness caused
by mutations at the gap junction proteins Cx26 and Cx31. Hum Genet.
125:53–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xia JH, Liu CY, Tang BS, Pan Q, Huang L,
Dai HP, et al: Mutations in the gene encoding gap junction protein
beta-3 associated with autosomal dominant hearing impairment. Nat
Genet. 20:370–373. 1998. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY,
Blanton SH, et al: Mutations in connexin31 underlie recessive as
well as dominant non-syndromic hearing loss. Hum Mol Genet.
9:63–67. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alexandrino F, Oliveira CA, Reis FC,
Maciel-Guerra AT and Sartorato EL: Screening for mutations in the
GJB3 gene in Brazilian patients with nonsyndromic deafness. J Appl
Genet. 45:249–254. 2004.PubMed/NCBI
|
20
|
Everett LA, Morsli H, Wu DK and Green ED:
Expression pattern of the mouse ortholog of the Pendred’s syndrome
gene (Pds) suggests a key role for pendrin in the inner ear. Proc
Natl Acad Sci USA. 96:9727–9732. 1999.
|
21
|
Wangemann P, Nakaya K, Wu T, Maganti RJ,
Itza EM, Sanneman JD, et al: Loss of cochlear HCO3− secretion
causes deafness via endolymphatic acidification and inhibition of
Ca2+ reabsorption in a Pendred syndrome mouse model. Am
J Physiol Renal Physiol. 292:F1345–F1353. 2007.
|
22
|
Everett LA, Belyantseva IA, Noben-Trauth
K, Cantos R, Chen A, Thakkar SI, et al: Targeted disruption of
mouse Pds provides insight about the inner-ear defects encountered
in Pendred syndrome. Hum Mol Genet. 10:153–161. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Campbell C, Cucci RA, Prasad S, Green GE,
Edeal JB, Galer CE, et al: Pendred syndrome, DFNB4, and PDS/SLC26A4
identification of eight novel mutations and possible
genotype-phenotype correlations. Hum Mutat. 17:403–411. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Park HJ, Shaukat S, Liu XZ, Hahn SH, Naz
S, Ghosh M, et al: Origins and frequencies of SLC26A4 (PDS)
mutations in east and south Asians: global implications for the
epidemiology of deafness. J Med Genet. 40:242–248. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yuan Y, Guo W, Tang J, Zhang G, Wang G,
Han M, et al: Molecular epidemiology and functional assessment of
novel allelic variants of SLC26A4 in non-syndromic hearing loss
patients with enlarged vestibular aqueduct in China. PLoS One.
7:e499842012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hu X, Liang F, Zhao M, Gong A, Berry ER,
Shi Y, et al: Mutational analysis of the SLC26A4 gene in Chinese
sporadic nonsyndromic hearing-impaired children. Int J Pediatr
Otorhinolaryngol. 76:1474–1480. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Qu C, Sun X, Shi Y, Gong A, Liang S, Zhao
M, et al: Microarray-based mutation detection of pediatric sporadic
nonsyndromic hearing loss in China. Int J Pediatr Otorhinolaryngol.
76:235–239. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Murgia A, Orzan E, Polli R, Martella M,
Vinanzi C, Leonardi E, et al: Cx26 deafness: mutation analysis and
clinical variability. J Med Genet. 36:829–832. 1999.PubMed/NCBI
|
29
|
Liu Y, Ke X, Qi Y, Li W and Zhu P:
Connexin26 gene (GJB2): prevalence of mutations in the Chinese
population. J Hum Genet. 47:688–690. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pryor SP, Madeo AC, Reynolds JC, Sarlis
NJ, Arnos KS, Nance WE, et al: SLC26A4/PDS genotype-phenotype
correlation in hearing loss with enlargement of the vestibular
aqueduct (EVA): evidence that Pendred syndrome and non-syndromic
EVA are distinct clinical and genetic entities. J Med Genet.
42:159–165. 2005. View Article : Google Scholar
|
31
|
Dai P, Yuan Y, Huang D, Zhu X, Yu F, Kang
D, et al: Molecular etiology of hearing impairment in Inner
Mongolia: mutations in SLC26A4 gene and relevant phenotype
analysis. J Transl Med. 6:742008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Valvassori GE and Clemis JD: The large
vestibular aqueduct syndrome. Laryngoscope. 88:723–728. 1978.
|
33
|
Chen G, He F, Fu S and Dong J: GJB2 and
mitochondrial DNA 1555A>G mutations in students with hearing
loss in the Hubei Province of China. Int J Pediatr
Otorhinolaryngol. 75:1156–1159. 2011.
|
34
|
Wu BL, Lindeman N, Lip V, et al:
Effectiveness of sequencing connexin 26 (GJB2) in cases of familial
or sporadic childhood deafness referred for molecular diagnostic
testing. Genet Med. 4:279–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ma Y, Yang T, Li Y, et al:
Genotype-phenotype correlation of two prevalent GJB2 mutations in
Chinese newborn infants ascertained from the Universal Newborn
Hearing Screening Program. Am J Med Genet A. 152A:2912–2915. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Ji YB, Han DY, Lan L, Wang DY, Zong L,
Zhao FF, et al: Molecular epidemiological analysis of mitochondrial
DNA12SrRNA A1555G, GJB2, and SLC26A4 mutations in sporadic
outpatients with nonsyndromic sensorineural hearing loss in China.
Acta Otolaryngol. 131:124–129. 2011. View Article : Google Scholar
|
37
|
Tekin M, Xia XJ, Erdenetungalag R, Cengiz
FB, White TW, Radnaabazar J, et al: GJB2 mutations in Mongolia:
complex alleles, low frequency, and reduced fitness of the deaf.
Ann Hum Genet. 74:155–164. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kelley PM, Harris DJ, Comer BC, Askew JW,
Fowler T, Smith SD, et al: Novel mutations in the connexin 26 gene
(GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J
Hum Genet. 62:792–799. 1998. View
Article : Google Scholar : PubMed/NCBI
|
39
|
Bruzzone R, Veronesi V, Gomès D, Bicego M,
Duval N, Marlin S, et al: Loss-of-function and residual channel
activity of connexin26 mutations associated with non-syndromic
deafness. FEBS Lett. 533:79–88. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Snoeckx RL, Huygen PL, Feldmann D, Marlin
S, Denoyelle F, Waligora J, et al: GJB2 mutations and degree of
hearing loss: a multicenter study. Am J Hum Genet. 77:945–957.
2005. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Oguchi T, Ohtsuka A, Hashimoto S, Oshima
A, Abe S, Kobayashi Y, et al: Clinical features of patients with
GJB2 (connexin 26) mutations: severity of hearing loss is
correlated with genotypes and protein expression patterns. J Hum
Genet. 50:76–83. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Huculak C, Bruyere H, Nelson TN, Kozak FK
and Langlois S: V37I connexin 26 allele in patients with
sensorineural hearing loss: evidence of its pathogenicity. Am J Med
Genet A. 140:2394–2400. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hayashi C, Funayama M, Li Y, Kamiya K,
Kawano A, Suzuki M, et al: Prevalence of GJB2 causing recessive
profound non-syndromic deafness in Japanese children. Int J Pediatr
Otorhinolaryngol. 75:211–214. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL,
Liu YH, et al: The prevalence of connexin 26 ( GJB2) mutations in
the Chinese population. Hum Genet. 111:394–397. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Paneto GG, Köhnemann S, Martins JA,
Cicarelli RM and Pfeiffer H: A single multiplex PCR and SNaPshot
minisequencing reaction of 42 SNPs to classify admixture
populations into mitochondrial DNA haplogroups. Mitochondrion.
11:296–302. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Speiser PW and White PC: Congenital
adrenal hyperplasia. N Engl J Med. 349:776–788. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kirchhoff T, Gaudet MM, Antoniou AC,
McGuffog L, Humphreys MK, Dunning AM, et al: Breast cancer risk and
6q22.33: combined results from Breast Cancer Association Consortium
and Consortium of Investigators on Modifiers of BRCA1/2. PLoS One.
7:e357062012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sagong B, Baek JI, Oh SK, Na KJ, Bae JW,
Choi SY, et al: A rapid method for simultaneous screening of
multi-gene mutations associated with hearing loss in the Korean
population. PLoS One. 8:e572372013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang QJ, Zhao YL, Rao SQ, Guo YF, Yuan H,
Zong L, et al: A distinct spectrum of SLC26A4 mutations in patients
with enlarged vestibular aqueduct in China. Clin Genet. 72:245–254.
2007. View Article : Google Scholar : PubMed/NCBI
|
50
|
Choi BY, Stewart AK, Madeo AC, Pryor SP,
Lenhard S, Kittles R, et al: Hypo-functional SLC26A4 variants
associated with nonsyndromic hearing loss and enlargement of the
vestibular aqueduct: genotype-phenotype correlation or coincidental
polymorphisms? Hum Mutat. 30:599–608. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Tsukamoto K, Suzuki H, Harada D, Namba A,
Abe S and Usami S: Distribution and frequencies of PDS (SLC26A4)
mutations in Pendred syndrome and nonsyndromic hearing loss
associated with enlarged vestibular aqueduct: a unique spectrum of
mutations in Japanese. Eur J Hum Genet. 11:916–922. 2003.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Park HJ, Lee SJ, Jin HS, Lee JO, Go SH,
Jang HS, et al: Genetic basis of hearing loss associated with
enlarged vestibular aqueducts in Koreans. Clin Genet. 67:160–165.
2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Azaiez H, Yang T, Prasad S, Sorensen JL,
Nishimura CJ, Kimberling WJ, et al: Genotype-phenotype correlations
for SLC26A4-related deafness. Hum Genet. 122:451–457. 2007.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Albert S, Blons H, Jonard L, Feldmann D,
Chauvin P, Loundon N, et al: SLC26A4 gene is frequently involved in
nonsyndromic hearing impairment with enlarged vestibular aqueduct
in Caucasian populations. Eur J Hum Genet. 14:773–779. 2006.
View Article : Google Scholar : PubMed/NCBI
|
55
|
de Moraes VC, dos Santos NZ, Ramos PZ,
Svidnicki MC, Castilho AM and Sartorato EL: Molecular analysis of
SLC26A4 gene in patients with nonsyndromic hearing loss and EVA:
identification of two novel mutations in Brazilian patients. Int J
Pediatr Otorhinolaryngol. 77:410–413. 2013.PubMed/NCBI
|