1
|
Oliver RF and Jahoda CA: Dermal-epidermal
interactions. Clin Dermatol. 6:74–82. 1988. View Article : Google Scholar : PubMed/NCBI
|
2
|
Driskell RR, Clavel C, Rendl M and Watt
FM: Hair follicle dermal papilla cells at a glance. J Cell Sci.
124:1179–1182. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Greco V, Chen T, Rendl M, Schober M,
Pasolli HA, Stokes N, Dela Cruz-Racelis J and Fuchs E: A two-step
mechanism for stem cell activation during hair regeneration. Cell
Stem Cell. 4:155–169. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Oshimori N and Fuchs E: Paracrine TGF-β
signaling counterbalances BMP-mediated repression in hair follicle
stem cell activation. Cell Stem Cell. 10:63–75. 2012.
|
5
|
Enshell-Seijffers D, Lindon C, Kashiwagi M
and Morgan BA: β-Catenin activity in the dermal papilla regulates
morphogenesis and regeneration of hair. Dev Cell. 18:633–642.
2010.
|
6
|
Enshell-Seijffers D, Lindon C, Wu E,
Taketo MM and Morgan BA: β-Catenin activity in the dermal papilla
of the hair follicle regulates pigment-type switching. Proc Natl
Acad Sci USA. 107:21564–21569. 2010.
|
7
|
Hamanaka RB, Glasauer A, Hoover P, Yang S,
Blatt H, Mullen AR, Getsios S, Gottardi CJ, DeBerardinis RJ, Lavker
RM and Chandel NS: Mitochondrial reactive oxygen species promote
epidermal differentiation and hair follicle development. Sci
Signal. 6:ra82013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wood JM, Decker H, Hartmann H, Chavan B,
Rokos H, Spencer JD, Hasse S, Thornton MJ, Shalbaf M, Paus R and
Schallreuter KU: Senile hair graying:
H2O2-mediated oxidative stress affects human
hair color by blunting methionine sulfoxide repair. FASEB J.
23:2065–2075. 2009.PubMed/NCBI
|
9
|
Trüeb RM: Oxidative stress in ageing of
hair. Int J Trichology. 1:6–14. 2009.PubMed/NCBI
|
10
|
Luanpitpong S, Nimmannit U, Chanvorachote
P, Leonard SS, Pongrakhananon V, Wang L and Rojanasakul Y: Hydroxyl
radical mediates cisplatin-induced apoptosis in human hair follicle
dermal papilla cells and keratinocytes through Bcl-2-dependent
mechanism. Apoptosis. 16:769–782. 2011. View Article : Google Scholar
|
11
|
Chekulayeva LV, Shevchuk IN, Chekulayev VA
and Ilmarinen K: Hydrogen peroxide, superoxide, and hydroxyl
radicals are involved in the phototoxic action of hematoporphyrin
derivative against tumor cells. J Environ Pathol Toxicol Oncol.
25:51–77. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Koruk M, Taysi S, Savas MC, Yilmaz O,
Akcay F and Karakok M: Oxidative stress and enzymatic antioxidant
status in patients with nonalcoholic steatohepatitis. Ann Clin Lab
Sci. 34:57–62. 2004.PubMed/NCBI
|
13
|
Bartosz G: Non-enzymatic antioxidant
capacity assays: limitations of use in biomedicine. Free Radic Res.
44:711–720. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lukiw WJ and Pogue AI: Induction of
specific micro RNA (miRNA) species by ROS-generating metal sulfates
in primary human brain cells. J Inorg Biochem. 101:1265–1269. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Lin Y, Liu X, Cheng Y, Yang J, Huo Y and
Zhang C: Involvement of MicroRNAs in hydrogen peroxide-mediated
gene regulation and cellular injury response in vascular smooth
muscle cells. J Biol Chem. 284:7903–7913. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Z, Liu Y, Han N, Chen X, Yu W, Zhang
W and Zou F: Profiles of oxidative stress-related microRNA and mRNA
expression in auditory cells. Brain Res. 1346:14–25. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
He L and Hannon GJ: MicroRNAs: small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Winter J and Diederichs S: MicroRNA
biogenesis and cancer. Methods Mol Biol. 676:3–22. 2011. View Article : Google Scholar
|
19
|
Papagiannakopoulos T and Kosik KS:
MicroRNAs: regulators of oncogenesis and stemness. BMC Med.
6:152008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin SL, Chiang A, Chang D and Ying SY:
Loss of mir-146a function in hormone-refractory prostate cancer.
RNA. 14:417–424. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kogo R, Mimori K, Tanaka F, Komune S and
Mori M: Clinical significance of miR-146a in gastric cancer cases.
Clin Cancer Res. 17:4277–4284. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hou Z, Xie L, Yu L, Qian X and Liu B:
MicroRNA-146a is down-regulated in gastric cancer and regulates
cell proliferation and apoptosis. Med Oncol. 29:886–892. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Teta M, Choi YS, Okegbe T, Wong G, Tam OH,
Chong MM, Seykora JT, Nagy A, Littman DR, Andl T and Millar SE:
Inducible deletion of epidermal Dicer and Drosha reveals multiple
functions for miRNAs in postnatal skin. Development. 139:1405–1416.
2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mardaryev AN, Ahmed MI, Vlahov NV, Fessing
MY, Gill JH, Sharov AA and Botchkareva NV: Micro-RNA-31 controls
hair cycle-associated changes in gene expression programs of the
skin andhair follicle. FASEB J. 24:3869–3881. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Goodarzi HR, Abbasi A, Saffari M,
Fazelzadeh Haghighi M, Tabei MB and Noori Daloii MR: Differential
expression analysis of balding and nonbalding dermal papilla
microRNAs in male pattern baldness with a microRNA amplification
profiling method. Br J Dermatol. 166:1010–1016. 2012. View Article : Google Scholar
|
26
|
Lee JP, Cha HJ, Lee KS, Lee KK, Son JH,
Kim KN, Lee DK and An S: Phytosphingosine-1-phosphate represses the
hydrogen peroxide-induced activation of c-Jun N-terminal kinase in
human dermal fibroblasts through the phosphatidylinositol
3-kinase/Akt pathway. Arch Dermatol Res. 304:673–678. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Cheng Z and Ristow M: Mitochondria and
metabolic homeostasis. Antioxid Redox Signal. 19:240–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Caputo F, Vegliante R and Ghibelli L:
Redox modulation of the DNA damage response. Biochem Pharmacol.
84:1292–1306. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li M, Zhao L, Liu J, Liu AL, Zeng WS, Luo
SQ and Bai XC: Hydrogen peroxide induces G2 cell cycle arrest and
inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken).
292:1107–1113. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee
YS, Kim SH and Lu J: Involvement of c-Jun N-terminal kinase in G2/M
arrest and caspase-mediated apoptosis induced by sulforaphane in
DU145 prostate cancer cells. Nutr Cancer. 52:213–224. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
He L, Nan MH, Oh HC, Kim YH, Jang JH,
Erikson RL, Ahn JS and Kim BY: Asperlin induces G2/M
arrest through ROS generation and ATM pathway in human cervical
carcinoma cells. Biochem Biophys Res Commun. 409:489–493. 2011.
|
32
|
Iekushi K, Seeger F, Assmus B, Zeiher AM
and Dimmeler S: Regulation of cardiac microRNAs by bone marrow
mononuclear cell therapy in myocardial infarction. Circulation.
125:1765–1773. S1–S7. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li R, Yan G, Li Q, Sun H, Hu Y, Sun J and
Xu B: MicroRNA-145 protects cardiomyocytes against hydrogen
peroxide (H2O2)-induced apoptosis through
targeting the mitochondria apoptotic pathway. PLoS One.
7:e449072012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen J, Zhang X, Lentz C, Abi-Daoud M,
Paré GC, Yang X, Feilotter HE and Tron VA: miR-193b regulates Mcl-1
in melanoma. Am J Pathol. 179:2162–2168. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mott JL, Kobayashi S, Bronk SF and Gores
GJ: mir-29 regulates Mcl-1 protein expression and apoptosis.
Oncogene. 26:6133–6140. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang-Yen HF: Mcl-1: a highly regulated
cell death and survival controller. J Biomed Sci. 13:201–204. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X,
Liu CG and Yang JM: Regulation of autophagy by a beclin 1-targeted
microRNA, miR-30a, in cancer cells. Autophagy. 5:816–823. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T,
Liu M, Li X and Tang H: miR-20a promotes proliferation and invasion
by targeting APP in human ovarian cancer cells. Acta Biochim
Biophys Sin (Shanghai). 42:318–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chai H, Liu M, Tian R, Li X and Tang H:
miR-20a targets BNIP2 and contributes chemotherapeutic resistance
in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta
Biochim Biophys Sin (Shanghai). 43:217–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Philippe L, Alsaleh G, Pichot A, Ostermann
E, Zuber G, Frisch B, Sibilia J, Pfeffer S, Bahram S, Wachsmann D
and Georgel P: MiR-20a regulates ASK1 expression and TLR4-dependent
cytokine release in rheumatoid fibroblast-like synoviocytes. Ann
Rheum Dis. 72:1071–1079. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kang HW, Wang F, Wei Q, Zhao YF, Liu M, Li
X and Tang H: miR-20a promotes migration and invasion by regulating
TNKS2 in human cervical cancer cells. FEBS Lett. 586:897–904. 2012.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Lin J, Huang S, Wu S, Ding J, Zhao Y,
Liang L, Tian Q, Zha R, Zhan R and He X: MicroRNA-423 promotes cell
growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in
hepatocellular carcinoma. Carcinogenesis. 32:1641–1647. 2011.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Lin HJ, Wang X, Shaffer KM, Sasaki CY and
Ma W: Characterization of H2O2-induced acute
apoptosis in cultured neural stem/progenitor cells. FEBS Lett.
570:102–106. 2004.PubMed/NCBI
|
44
|
Herrera B, Alvarez AM, Sánchez A,
Fernández M, Roncero C, Benito M and Fabregat I: Reactive oxygen
species (ROS) mediates the mitochondrial-dependent apoptosis
induced by transforming growth factor (beta) in fetal hepatocytes.
FASEB J. 15:741–751. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cai J and Jones DP: Superoxide in
apoptosis. Mitochondrial generation triggered by cytochrome c loss.
J Biol Chem. 273:11401–11404. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Arellano M and Moreno S: Regulation of
CDK/cyclin complexes during the cell cycle. Int J Biochem Cell
Biol. 29:559–573. 1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rivera A, Mavila A, Bayless KJ, Davis GE
and Maxwell SA: Cyclin A1 is a p53-induced gene that mediates
apoptosis, G2/M arrest, and mitotic catastrophe in renal, ovarian,
and lung carcinoma cells. Cell Mol Life Sci. 63:1425–1439. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Chung JH and Bunz F: Cdk2 is required for
p53-independent G2/M checkpoint control. PLoS Genet.
6:e10008632010. View Article : Google Scholar : PubMed/NCBI
|