1
|
Choi CW, Kim BI, Hong JS, Kim EK, Kim HS
and Choi JH: Bronchopulmonary dysplasia in a rat model induced by
intra-amniotic inflammation and postnatal hyperoxia: morphometric
aspects. Pediatr Res. 65:323–327. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Speer CP: Inflammation and
bronchopulmonary dysplasia: A continuing story. Semin Fetal
Neonatal Med. 11:354–362. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jarreau PH, Fayon M, Baud O, Autret-Leca
E, Danan M, de Verdelhan A and Castot A: The use of postnatal
corticosteroid therapy in premature infants to prevent or treat
bronchopulmonary dysplasia: current situation and recommendations.
Arch Pediatr. 17:1480–1487. 2010.(In French).
|
4
|
Grier DG and Halliday HL: Corticosteroids
in the prevention and management of bronchopulmonary dysplasia.
Semin Neonatol. 8:83–91. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
To Y, Ito K, Kizawa Y, Failla M, Ito M,
Kusama T, Elliott WM, Hogg JC, Adcock IM and Barnes PJ: Targeting
phosphoinositide-3-kinase-delta with theophylline reverses
corticosteroid insensitivity in chronic obstructive pulmonary
disease. Am J Respir Crit Care Med. 182:897–904. 2010. View Article : Google Scholar
|
6
|
Mascali JJ, Cvietusa P, Negri J and Borish
L: Anti-inflammatory effects of theophylline: modulation of
cytokine production. Ann Allergy Asthma Immunol. 77:34–38. 1996.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhu L, Li H, Tang J, Zhu J and Zhang Y:
Hyperoxia arrests alveolar development through suppression of
histone deacetylases in neonatal rats. Pediatr Pulmonol.
47:264–274. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Coalson JJ: Pathology of bronchopulmonary
dysplasia. Semin Perinatol. 30:179–184. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schreiber T, Niemann C, Schmidt B and
Karzai W: A novel model of selective lung ventilation to
investigate the long-term effects of ventilation-induced lung
injury. Shock. 26:50–54. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kramer EL, Deutsch GH, Sartor MA, Hardie
WD, Ikegami M, Korfhagen TR and Le Cras TD: Perinatal increases in
TGF-α disrupt the saccular phase of lung morphogenesis and cause
remodeling: microarray analysis. Am J Physiol Lung Cell Mol
Physiol. 293:L314–L327. 2007.
|
11
|
Kim N and Vu TH: Parabronchial smooth
muscle cells and alveolar myofibroblasts in lung development. Birth
Defects Res C Embryo Today. 78:80–89. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bland RD: Neonatal chronic lung disease in
the post-surfactant era. Biol Neonate. 88:181–191. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vohr BR, Wright LL, Dusick AM, et al:
Neurodevelopmental and functional outcomes of extremely low birth
weight infants in the National Institute of Child Health and Human
Development Neonatal Research Network, 1993–1994. Pediatrics.
105:1216–1226. 2000.PubMed/NCBI
|
14
|
Yoon BH, Romero R, Jun JK, et al: Amniotic
fluid cytokines (interleukin-6, tumor necrosis factor-alpha,
interleukin-1 beta, and interleukin-8) and the risk for the
development of bronchopulmonary dysplasia. Am J Obstet Gynecol.
177:825–830. 1997. View Article : Google Scholar
|
15
|
Speer CP, Pabst MJ, Hedegaard HB, Rest RF
and Johnston RB Jr: Enhanced release of oxygen metabolites by
monocyte-derived macrophages exposed to proteolytic enzymes:
activity of neutrophil elastase and cathepsin G. J Immunol.
133:2151–2156. 1984.
|
16
|
Yoon BH, Romero R, Jun JK, et al: Amniotic
fluid cytokines (interleukin-6, tumor necrosis factor-alpha,
interleukin-1 beta, and interleukin-8) and the risk for the
development of bronchopulmonary dysplasia. Am J Obstet Gynecol.
177:825–830. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gomez R, Romero R, Ghezzi F, Yoon BH,
Mazor M and Berry SM: The fetal inflammatory response syndrome. Am
J Obstet Gynecol. 179:194–202. 1998. View Article : Google Scholar
|
18
|
Arnon S, Grigg J and Silverman M:
Pulmonary inflammatory cells in ventilated preterm infants: effect
of surfactant treatment. Arch Dis Child. 69:44–48. 1993. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kotecha S, Chan B, Azam N, Silverman M and
Shaw RJ: Increase in interleukin-8 and soluble intercellular
adhesion molecule-1 in bronchoalveolar lavage of premature infants
with chronic lung disease. Arch Dis Child Fetal Neonatal Ed.
72:F90–F96. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kotecha S, Mildner RJ, Prince LR, et al:
The role of neutrophil apoptosis in the resolution of acute lung
injury in newborn infants. Thorax. 58:961–967. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jones CA, Cayabyab RG, Kwong KY, et al:
Undetectable interleukin (IL)-10 and persistent IL-8 expression
early in hyaline membrane disease: a possible developmental basis
for the predisposition to chronic lung inflammation in preterm
newborns. Pediatr Res. 39:966–975. 1996. View Article : Google Scholar
|
22
|
Kaneko Y, Takashima K, Suzuki N and Yamana
K: Effects of theophylline on chronic inflammatory lung injury
induced by LPS exposure in guinea pigs. Allergol Int. 56:445–456.
2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ito K, Lim S, Caramori G, et al: A
molecular mechanism of action of theophylline: Induction of histone
deacetylase activity to decrease inflammatory gene expression. Proc
Natl Acad Sci USA. 99:8921–8926. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liang B, Jiang S, Zhang Z, et al:
Anti-inflammatory effects of theophylline: modulation of immune
functions during murine leukemia virus infection. Immunopharmacol
Immunotoxicol. 23:307–319. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ezeamuzie CI and Shihab PK: Interactions
between theophylline and salbutamol on cytokine release in human
monocytes. J Pharmacol Exp Ther. 334:302–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Marwick JA, Caramori G, Stevenson CS, et
al: Inhibition of PI3Kdelta restores glucocorticoid function in
smoking-induced airway inflammation in mice. Am J Respir Crit Care
Med. 179:542–548. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bonner JC: The epidermal growth factor
receptor at the crossroads of airway remodeling. Am J Physiol Lung
Cell Mol Physiol. 283:L528–L530. 2002.PubMed/NCBI
|
28
|
Lutgens E, Gijbels M, Smook M, Heeringa P,
Gotwals P, Koteliansky VE and Daemen MJ: Transforming growth
factor-beta mediates balance between inflammation and fibrosis
during plaque progression. Arterioscler Thromb Vasc Biol.
22:975–982. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shull MM, Ormsby I, Kier AB, et al:
Targeted disruption of the mouse transforming growth factor-beta 1
gene results in multifocal inflammatory disease. Nature.
359:693–699. 1992. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Lan HY: Diverse roles of TGF-β/Smads in
renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067.
2011.
|
31
|
Kitamura H, Cambier S, Somanath S, et al:
Mouse and human lung fibroblasts regulate dendritic cell
trafficking, airway inflammation, and fibrosis through integrin
αvβ8-mediated activation of TGF-β. J Clin Invest. 121:2863–2875.
2011.PubMed/NCBI
|