1
|
Chen CJ, Yang HI, Su J, et al: Risk of
hepatocellular carcinoma across a biological gradient of serum
hepatitis B virus DNA level. JAMA. 295:65–73. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liu Y, Zhang JB, Qin Y, et al: PROX1
promotes hepatocellular carcinoma metastasis by way of
up-regulating hypoxia-inducible factor 1α expression and protein
stability. Hepatology. 58:692–705. 2013.PubMed/NCBI
|
3
|
Luo Y, Li W and Liao H: HMGA2 induces
epithelial-to-mesenchymal transition in human hepatocellular
carcinoma cells. Oncol Lett. 5:1353–1356. 2013.PubMed/NCBI
|
4
|
Zhao H, Wang J, Han Y, et al: ARID2: a new
tumor suppressor gene in hepatocellular carcinoma. Oncotarget.
2:886–891. 2011.PubMed/NCBI
|
5
|
Lu CY, Lin KY, Tien MT, Wu CT, Uen YH and
Tseng TL: Frequent DNA methylation of MiR-129–2 and its potential
clinical implication in hepatocellular carcinoma. Genes Chromosomes
Cancer. 52:636–643. 2013.
|
6
|
Shrivastava S, Petrone J, Steele R, Lauer
GM, Bisceglie AM and Ray RB: Up-regulation of circulating miR-20a
is correlated with hepatitis C virus-mediated liver disease
progression. Hepatology. 58:863–871. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ding J, Huang S, Wang Y, et al:
Genome-wide screening revealed that miR-195 targets the TNF-α/NF-κB
pathway by downregulating IκB kinase alpha and TAB3 in
hepatocellular carcinoma. Hepatology. 58:654–666. 2013.
|
8
|
Huang S and He X: The role of microRNAs in
liver cancer progression. Br J Cancer. 104:235–240. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Barbato C, Arisi I, Frizzo ME, Brandi R,
Da Sacco L and Masotti A: Computational challenges in miRNA target
predictions: to be or not to be a true target? J Biomed Biotechnol.
2009:8030692009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang PR, Xu M, Toffanin S, Li Y, Llovet JM
and Russell DW: Induction of hepatocellular carcinoma by in vivo
gene targeting. Proc Natl Acad Sci USA. 109:11264–11269. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Barrett T, Troup DB, Wilhite SE, et al:
NCBI GEO: mining tens of millions of expression profiles - database
and tools update. Nucleic Acids Res. 35(Suppl 1): D760–D765. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gautier L, Irizarry R, Cope L and Bolstad
B: Description of Affy. http://www.bioconductor.org/packages/release/bioc/vignettes/affy/inst/doc/affy.pdf.
Accessed April 15, 2014
|
13
|
Fujita A, Sato JR, de Rodrigues LO,
Ferreira CE and Sogayar MC: Evaluating different methods of
microarray data normalization. BMC Bioinformatics. 7:4692006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Troyanskaya O, Cantor M, Sherlock G, et
al: Missing value estimation methods for DNA microarrays.
Bioinformatics. 17:520–525. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Smyth GK: Limma: linear models for
microarray data. Bioinformatics and Computational Biology Solutions
using R and Bioconductor. Gentleman R, Carey V, Huber W, Irizarry R
and Dudoit S: Springer; New York, NY: pp. 397–420. 2005, View Article : Google Scholar
|
16
|
Diboun I, Wernisch L, Orengo CA and
Koltzenburg M: Microarray analysis after RNA amplification can
detect pronounced differences in gene expression using limma. BMC
Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li
T: miRecords: an integrated resource for microRNA-target
interactions. Nucleic Acids Res. 37:D105–D110. 2009.PubMed/NCBI
|
18
|
Hsu SD, Lin FM, Wu WY, et al: miRTarBase:
a database curates experimentally validated microRNA-target
interactions. Nucleic Acids Res. 39:D163–D169. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Szklarczyk D, Franceschini A, Kuhn M, et
al: The STRING database in 2011: functional interaction networks of
proteins, globally integrated and scored. Nucleic Acids Res.
39:D561–D568. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang B, Kirov S and Snoddy J: WebGestalt:
an integrated system for exploring gene sets in various biological
contexts. Nucleic Acids Res. 33:W741–W748. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Edgar R, Domrachev M and Lash AE: Gene
Expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zwanzig R: Ensemble method in the theory
of irreversibility. J Chem Phys. 33:13381960. View Article : Google Scholar
|
23
|
Kanehisa M and Goto S: KEGG: kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hulsegge I, Kommadath A and Smits MA:
Globaltest and GOEAST: two different approaches for Gene Ontology
analysis. BMC Proc. 3(Suppl 4): S102009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Exton H: Handbook of Hypergeometric
Integrals: Theory, Applications, Tables, Computer Programs. Ellis
Horwood; Chichester, England: 1978
|
26
|
Weng L, Macciardi F, Subramanian A, et al:
SNP-based pathway enrichment analysis for genome-wide association
studies. BMC Bioinformatics. 12:992011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li QL, Gu FM, Wang Z, et al: Activation of
PI3K/AKT and MAPK pathway through a PDGFRβ-dependent feedback loop
is involved in rapamycin resistance in hepatocellular carcinoma.
PLoS One. 7:e333792012.
|
28
|
Stengel K and Zheng Y: Cdc42 in oncogenic
transformation, invasion, and tumorigenesis. Cell Signal.
23:1415–1423. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Manu KA, Shanmugam MK, Ong TH, et al:
Emodin suppresses migration and invasion through the modulation of
CXCR4 expression in an orthotopic model of human hepatocellular
carcinoma. PLoS One. 8:e570152013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shi YH, Ding ZB, Zhou J, et al: Prognostic
significance of Beclin 1-dependent apoptotic activity in
hepatocellular carcinoma. Autophagy. 5:380–382. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Llovet JM and Bruix J: Molecular targeted
therapies in hepatocellular carcinoma. Hepatology. 48:1312–1327.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhu AX, Sahani DV, Duda DG, et al:
Efficacy, safety, and potential biomarkers of sunitinib monotherapy
in advanced hepatocellular carcinoma: a phase II study. J Clin
Oncol. 27:3027–3035. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Y, Takahashi S, Tasaka A, Yoshima T,
Ochi H and Chayama K: Involvement of microRNA-224 in cell
proliferation, migration, invasion, and anti-apoptosis in
hepatocellular carcinoma. J Gastroenterol Hepatol. 28:565–575.
2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jiang YF, Ma J, He Y, Zhang YH, Xu Y and
Gong GZ: Cationic liposome-mediated transfection of CD40 ligand
gene inhibits hepatic tumor growth of hepatocellular carcinoma in
mice. J Zhejiang Univ Sci B. 10:7–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tang Y, Chen Y, Ni B, Yang D, Guo S and Wu
Y: Up-regulation of the expression of costimulatory molecule CD40
in hepatocytes by hepatitis B virus X antigen. Biochem Biophys Res
Commun. 384:12–17. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wan Y, Ma X, Li X and Yi J: A novel
immunotherapy to hepatocellular carcinoma: CD40-activated B
lymphocytes transfected with AFPmRNA. Med Hypotheses. 73:835–837.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang S, Ouyang N, Lin L, et al:
HGF-induced PKCζ activation increases functional CXCR4 expression
in human breast cancer cells. PLoS One. 7:e291242012.
|
38
|
Liu Y, Wang B, Wang J, et al:
Down-regulation of PKCzeta expression inhibits chemotaxis signal
transduction in human lung cancer cells. Lung Cancer. 63:210–218.
2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xia H, Ooi LL and Hui KM: MiR-214 targets
β-catenin pathway to suppress invasion, stem-like traits and
recurrence of human hepatocellular carcinoma. PLoS One.
7:e442062012.
|
40
|
Fujita R, Ounzain S, Wang AC, Heads RJ and
Budhram-Mahadeo VS: Hsp-27 induction requires POU4F2/Brn-3b TF in
doxorubicin-treated breast cancer cells, whereas phosphorylation
alters its cellular localisation following drug treatment. Cell
Stress Chaperones. 16:427–439. 2011. View Article : Google Scholar
|
41
|
Golemis EA and Chernoff J: Analysis and
manipulation of intracellular signaling cascades. Methods.
32:347–348. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang L, Jiang G, Yao F, et al: Growth
inhibition and apoptosis induced by osthole, a natural coumarin, in
hepatocellular carcinoma. PLoS One. 7:e378652012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang DM, Liu JS, Deng LJ, et al:
Arenobufagin, a natural bufadienolide from toad venom, induces
apoptosis and autophagy in human hepatocellular carcinoma cells
through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis.
34:1331–1342. 2013. View Article : Google Scholar
|
44
|
Matsuda Y, Wakai T, Kubota M, et al:
Clinical significance of cell cycle inhibitors in hepatocellular
carcinoma. Med Mol Morphol. 46:185–192. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yun SM, Lee JH, Jung KH, et al: Induction
of apoptosis and suppression of angiogenesis of hepatocellular
carcinoma by HS-159, a novel phosphatidylinositol 3-kinase
inhibitor. Int J Oncol. 43:201–109. 2013.PubMed/NCBI
|