1
|
Bradshaw AD, Graves DC, Motamed K and Sage
EH: SPARC-null mice exhibit increased adiposity without significant
differences in overall body weight. Proc Natl Acad Sci USA.
100:6045–6050. 2003. View Article : Google Scholar
|
2
|
Schwartz RC, Young MF and Tsipouras P: Two
RFLPs in the 5′ end of the human osteonectin (ON) gene. Nucleic
Acids Res. 16:90761988.
|
3
|
Mayer U, Aumailley M, Mann K, Timpl R and
Engel J: Calcium-dependent binding of basement membrane protein
BM-40 (osteonectin, SPARC) to basement membrane collagen type IV.
Eur J Biochem. 198:141–150. 1991. View Article : Google Scholar
|
4
|
Bradshaw AD: The role of SPARC in
extracellular matrix assembly. J Cell Commun Signal. 3:239–246.
2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rivera LB and Brekken RA: SPARC promotes
pericyte recruitment via inhibition of endoglin-dependent TGF-beta1
activity. J Cell Biol. 193:1305–1319. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Choi BD, Yun SH, Jeong SJ, et al:
Expression of thymosin beta4 in odontoblasts during mouse tooth
development. Int J Mol Med. 29:841–847. 2012.PubMed/NCBI
|
7
|
Nonogaki S, Campos HG, Butugan O, et al:
Markers of vascular differentiation, proliferation and tissue
remodeling in juvenile nasopharyngeal angiofibromas. Exp Ther Med.
1:921–926. 2010.
|
8
|
Prenzel KL, Warnecke-Eberz U, Xi H, et al:
Significant overexpression of SPARC/osteonectin mRNA in pancreatic
cancer compared to cancer of the papilla of Vater. Oncol Rep.
15:1397–1401. 2006.
|
9
|
Rodriguez-Jiménez FJ, Caldés T, Iniesta P,
Vidart JA, Garcia-Asenjo JL and Benito M: Overexpression of SPARC
protein contrasts with its transcriptional silencing by aberrant
hypermethylation of SPARC CpG-rich region in endometrial carcinoma.
Oncol Rep. 17:1301–1307. 2007.
|
10
|
Kunigal S, Gondi CS, Gujrati M, et al:
SPARC-induced migration of glioblastoma cell lines via uPA-uPAR
signaling and activation of small GTPase RhoA. Int J Oncol.
29:1349–1357. 2006.PubMed/NCBI
|
11
|
Seno T, Harada H, Kohno S, Teraoka M,
Inoue A and Ohnishi T: Downregulation of SPARC expression inhibits
cell migration and invasion in malignant gliomas. Int J Oncol.
34:707–715. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sailaja GS, Bhoopathi P, Gorantla B, et
al: The secreted protein acidic and rich in cysteine (SPARC)
induces endoplasmic reticulum stress leading to autophagy-mediated
apoptosis in neuroblastoma. Int J Oncol. 42:188–196. 2013.
|
13
|
Liu H, Xu Y, Chen Y, et al: RNA
interference against SPARC promotes the growth of U-87MG human
malignant glioma cells. Oncol Lett. 2:985–990. 2011.PubMed/NCBI
|
14
|
Al Saleh S, Sharaf LH and Luqmani YA:
Signalling pathways involved in endocrine resistance in breast
cancer and associations with epithelial to mesenchymal transition
(Review). Int J Oncol. 38:1197–1217. 2011.
|
15
|
Zhang JL, Chen GW, Liu YC, et al: Secreted
protein acidic and rich in cysteine (SPARC) suppresses angiogenesis
by down-regulating the expression of VEGF and MMP-7 in gastric
cancer. PLoS One. 7:e446182012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Arnold SA, Rivera LB, Carbon JG, et al:
Losartan slows pancreatic tumor progression and extends survival of
SPARC-null mice by abrogating aberrant TGFbeta activation. PLoS
One. 7:e313842012. View Article : Google Scholar
|
17
|
Said N, Frierson HF, Sanchez-Carbayo M,
Brekken RA and Theodorescu D: Loss of SPARC in bladder cancer
enhances carcinogenesis and progression. J Clin Invest.
123:751–766. 2013.PubMed/NCBI
|
18
|
Yang L, Luo Y and Wei J: Integrative
genomic analyses on Ikaros and its expression related to solid
cancer prognosis. Oncol Rep. 24:571–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang L, Luo Y, Wei J and He S: Integrative
genomic analyses on IL28RA, the common receptor of
interferon-lambda1, -lambda2 and -lambda3. Int J Mol Med.
25:807–812. 2010.PubMed/NCBI
|
20
|
Yang L, Wei J and He S: Integrative
genomic analyses on interferon-lambdas and their roles in cancer
prediction. Int J Mol Med. 25:299–304. 2010.PubMed/NCBI
|
21
|
Yu H, Yuan J, Xiao C and Qin Y:
Integrative genomic analyses of recepteur d’origine nantais and its
prognostic value in cancer. Int J Mol Med. 31:1248–1254. 2013.
|
22
|
Thompson JD, Gibson TJ, Plewniak F,
Jeanmougin F and Higgins DG: The CLUSTAL_X windows interface:
flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res. 25:4876–4882. 1997.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Guindon S, Lethiec F, Duroux P and Gascuel
O: PHYML Online - a web server for fast maximum likelihood-based
phylogenetic inference. Nucleic Acids Res. 33:W557–W559. 2005.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kumar S, Tamura K and Nei M: MEGA3:
Integrated software for Molecular Evolutionary Genetics Analysis
and sequence alignment. Brief Bioinform. 5:150–163. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang Z: PAML: a program package for
phylogenetic analysis by maximum likelihood. Comput Appl Biosci.
13:555–556. 1997.PubMed/NCBI
|
26
|
Yang Z, Nielsen R, Goldman N and Pedersen
AM: Codon-substitution models for heterogeneous selection pressure
at amino acid sites. Genetics. 155:431–449. 2000.PubMed/NCBI
|
27
|
Katoh Y and Katoh M: Integrative genomic
analyses on GLI1: positive regulation of GLI1 by Hedgehog-GLI,
TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of
GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol.
35:187–192. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Katoh M and Katoh M: Integrative genomic
analyses of WNT11: transcriptional mechanisms based on canonical
WNT signals and GATA transcription factors signaling. Int J Mol
Med. 24:247–251. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Katoh M and Katoh M: Transcriptional
mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and
Notch signaling cascades. Int J Mol Med. 23:763–769. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Katoh M and Katoh M: Transcriptional
regulation of WNT2B based on the balance of Hedgehog, Notch, BMP
and WNT signals. Int J Oncol. 34:1411–1415. 2009.PubMed/NCBI
|
31
|
Chalifa-Caspi V, Yanai I, Ophir R, et al:
GeneAnnot: comprehensive two-way linking between oligonucleotide
array probesets and GeneCards genes. Bioinformatics. 20:1457–1458.
2004. View Article : Google Scholar
|
32
|
Parkinson H, Sarkans U, Shojatalab M, et
al: ArrayExpress - a public repository for microarray gene
expression data at the EBI. Nucleic Acids Res. 33:D553–D555. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kolker E, Higdon R, Morgan P, et al:
SPIRE: Systematic protein investigative research environment. J
Proteomics. 75:122–126. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kolker E, Higdon R, Haynes W, et al:
MOPED: Model Organism Protein Expression Database. Nucleic Acids
Res. 40:D1093–D1099. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mizuno H, Kitada K, Nakai K and Sarai A:
PrognoScan: a new database for meta-analysis of the prognostic
value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Metzeler KH, Hummel M, Bloomfield CD, et
al: An 86-probe-set gene-expression signature predicts survival in
cytogenetically normal acute myeloid leukemia. Blood.
112:4193–4201. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hummel M, Bentink S, Berger H, et al: A
biologic definition of Burkitt’s lymphoma from transcriptional and
genomic profiling. N Engl J Med. 354:2419–2430. 2006.
|
38
|
Jardin F, Jais JP, Molina TJ, et al:
Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct
gene expression signature and a poor prognosis under R-CHOP
treatment: a GELA study. Blood. 116:1092–1104. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schmidt M, Böhm D, von Torne C, et al: The
humoral immune system has a key prognostic impact in node-negative
breast cancer. Cancer Res. 68:5405–5413. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chin K, DeVries S, Fridlyand J, et al:
Genomic and transcriptional aberrations linked to breast cancer
pathophysiologies. Cancer Cell. 10:529–541. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Miller LD, Smeds J, George J, et al: An
expression signature for p53 status in human breast cancer predicts
mutation status, transcriptional effects, and patient survival.
Proc Natl Acad Sci USA. 102:13550–13555. 2005. View Article : Google Scholar
|
42
|
Ivshina AV, George J, Senko O, et al:
Genetic reclassification of histologic grade delineates new
clinical subtypes of breast cancer. Cancer Res. 66:10292–10301.
2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Smith JJ, Deane NG, Wu F, et al:
Experimentally derived metastasis gene expression profile predicts
recurrence and death in patients with colon cancer.
Gastroenterology. 138:958–968. 2010. View Article : Google Scholar
|
44
|
Jorissen RN, Gibbs P, Christie M, et al:
Metastasis-associated gene expression changes predict poor outcomes
in patients with Dukes stage B and C colorectal cancer. Clin Cancer
Res. 15:7642–7651. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Laurent C, Valet F, Planque N, et al: High
PTP4A3 phosphatase expression correlates with metastatic risk in
uveal melanoma patients. Cancer Res. 71:666–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Okayama H, Kohno T, Ishii Y, et al:
Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lee ES, Son DS, Kim SH, et al: Prediction
of recurrence-free survival in postoperative non-small cell lung
cancer patients by using an integrated model of clinical
information and gene expression. Clin Cancer Res. 14:7397–7404.
2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Tothill RW, Tinker AV, George J, et al:
Novel molecular subtypes of serous and endometrioid ovarian cancer
linked to clinical outcome. Clin Cancer Res. 14:5198–5208. 2008.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Bonome T, Levine DA, Shih J, et al: A gene
signature predicting for survival in suboptimally debulked patients
with ovarian cancer. Cancer Res. 68:5478–5486. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sboner A, Demichelis F, Calza S, et al:
Molecular sampling of prostate cancer: a dilemma for predicting
disease progression. BMC Med Genomics. 3:82010. View Article : Google Scholar : PubMed/NCBI
|
51
|
McCurdy SM, Dai Q, Zhang J, et al: SPARC
mediates early extracellular matrix remodeling following myocardial
infarction. Am J Physiol Heart Circ Physiol. 301:H497–H505. 2011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Cheng L, Sage EH and Yan Q: SPARC fusion
protein induces cellular adhesive signaling. PLoS One.
8:e532022013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Nakamura K, Nakano S, Miyoshi T,
Yamanouchi K, Matsuwaki T and Nishihara M: Age-related resistance
of skeletal muscle-derived progenitor cells to SPARC may explain a
shift from myogenesis to adipogenesis. Aging (Albany NY). 4:40–48.
2012.PubMed/NCBI
|
54
|
Pataquiva-Mateus AY, Wu HC, Lucchesi C,
Ferraz MP, Monteiro FJ and Spector M: Supplementation of collagen
scaffolds with SPARC to facilitate mineralization. J Biomed Mater
Res B Appl Biomater. 100:862–870. 2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li B, Li F, Chi L, Zhang L and Zhu S: The
expression of SPARC in human intracranial aneurysms and its
relationship with MMP-2/-9. PLoS One. 8:e584902013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Seet LF, Tong L, Su R and Wong TT:
Involvement of SPARC and MMP-3 in the pathogenesis of human
pterygium. Invest Ophthalmol Vis Sci. 53:587–595. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Patterson J and Hubbell JA: SPARC-derived
protease substrates to enhance the plasmin sensitivity of
molecularly engineered PEG hydrogels. Biomaterials. 32:1301–1310.
2011. View Article : Google Scholar : PubMed/NCBI
|
58
|
Weaver MS, Sage EH and Yan Q: Absence of
SPARC in lens epithelial cells results in altered adhesion and
extracellular matrix production in vitro. J Cell Biochem.
97:423–432. 2006. View Article : Google Scholar
|
59
|
Lin ZY and Chuang WL: Genes responsible
for the characteristics of primary cultured invasive phenotype
hepatocellular carcinoma cells. Biomed Pharmacother. 66:454–458.
2012. View Article : Google Scholar
|
60
|
Zhang Y, Yang B, Du Z, et al: Aberrant
methylation of SPARC in human hepatocellular carcinoma and its
clinical implication. World J Gastroenterol. 18:2043–2052. 2012.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Xue LY, Zou SM, Zheng S, et al:
Expressions of the gamma2 chain of laminin-5 and secreted protein
acidic and rich in cysteine in esophageal squamous cell carcinoma
and their relation to prognosis. Chin J Cancer. 30:69–78. 2011.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Termine JD, Kleinman HK, Whitson SW, Conn
KM, McGarvey ML and Martin GR: Osteonectin, a bone-specific protein
linking mineral to collagen. Cell. 26:99–105. 1981. View Article : Google Scholar : PubMed/NCBI
|
63
|
Mason IJ, Murphy D, Münke M, Francke U,
Elliott RW and Hogan BL: Developmental and transformation-sensitive
expression of the Sparc gene on mouse chromosome 11. EMBO J.
5:1831–1837. 1986.PubMed/NCBI
|
64
|
Huynh MH, Sodek K, Lee H and Ringuette M:
Interaction between SPARC and tubulin in Xenopus. Cell Tissue Res.
317:313–317. 2004. View Article : Google Scholar : PubMed/NCBI
|
65
|
Sage H, Decker J, Funk S and Chow M:
SPARC: a Ca2+-binding extracellular protein associated
with endothelial cell injury and proliferation. J Mol Cell Cardiol.
21(Suppl 1): 13–22. 1989.
|
66
|
Leboy PS, Shapiro IM, Uschmann BD, Oshima
O and Lin D: Gene expression in mineralizing chick epiphyseal
cartilage. J Biol Chem. 263:8515–8520. 1988.PubMed/NCBI
|
67
|
Aeschlimann D, Kaupp O and Paulsson M:
Transglutaminase-catalyzed matrix cross-linking in differentiating
cartilage: identification of osteonectin as a major glutaminyl
substrate. J Cell Biol. 129:881–892. 1995. View Article : Google Scholar
|
68
|
Breton-Gorius J, Clezardin P, Guichard J,
et al: Localization of platelet osteonectin at the internal face of
the alpha-granule membranes in platelets and megakaryocytes. Blood.
79:936–941. 1992.PubMed/NCBI
|
69
|
Komatsubara I, Murakami T, Kusachi S, et
al: Spatially and temporally different expression of osteonectin
and osteopontin in the infarct zone of experimentally induced
myocardial infarction in rats. Cardiovasc Pathol. 12:186–194. 2003.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Yin F, Liu X, Li D, Wang Q, Zhang W and Li
L: Bioinformatic analysis of chemokine (C-C motif) ligand 21 and
SPARC-like protein 1 revealing their associations with drug
resistance in ovarian cancer. Int J Oncol. 42:1305–1316.
2013.PubMed/NCBI
|
71
|
He Q, Wei J, Zhang J, et al: Aberrant
methylation of secreted protein, acidic and rich in cysteine in
human laryngeal and hypopharyngeal carcinoma. Oncol Lett.
2:725–729. 2011.PubMed/NCBI
|
72
|
Chen D, Yang K, Mei J, Zhang G, Lv X and
Xiang L: Screening the pathogenic genes and pathways related to
DMBA (7,12-dimethylbenz[a]anthracene)-induced transformation of
hamster oral mucosa from precancerous lesions to squamous cell
carcinoma. Oncol Lett. 2:637–642. 2011.PubMed/NCBI
|
73
|
Suhr ML, Dysvik B, Bruland O, et al: Gene
expression profile of oral squamous cell carcinomas from Sri Lankan
betel quid users. Oncol Rep. 18:1061–1075. 2007.PubMed/NCBI
|
74
|
Gagliano N, Costa F, Cossetti C, et al:
Glioma-astrocyte interaction modifies the astrocyte phenotype in a
co-culture experimental model. Oncol Rep. 22:1349–1356. 2009.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Zhu XC, Dong QZ, Zhang XF, et al:
microRNA-29a suppresses cell proliferation by targeting SPARC in
hepatocellular carcinoma. Int J Mol Med. 30:1321–1326.
2012.PubMed/NCBI
|
76
|
Ylipää A, Yli-Harja O, Zhang W and Nykter
M: A systems biological approach to identify key transcription
factors and their genomic neighborhoods in human sarcomas. Chin J
Cancer. 30:27–40. 2011.PubMed/NCBI
|
77
|
Ren D, Wang M, Guo W, et al: Wild-type p53
suppresses the epithelial-mesenchymal transition and stemness in
PC-3 prostate cancer cells by modulating miR-145. Int J Oncol.
42:1473–1481. 2013.PubMed/NCBI
|
78
|
Abou-El-Ardat K, Derradji H, de Vos W, et
al: Response to low-dose X-irradiation is p53-dependent in a
papillary thyroid carcinoma model system. Int J Oncol.
39:1429–1441. 2011.PubMed/NCBI
|
79
|
Stefancikova L, Moulis M, Fabian P, et al:
Prognostic impact of p53 aberrations for R-CHOP-treated patients
with diffuse large B-cell lymphoma. Int J Oncol. 39:1413–1420.
2011.PubMed/NCBI
|