1
|
Bernton HS and Brown H: Insect allergy -
preliminary studies of the cockroach. J Allergy. 35:506–513. 1964.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Arruda LK, Vailes LD, Ferriani VP, Santos
AB, Pomés A and Chapman MD: Cockroach allergens and asthma. J
Allergy Clin Immunol. 107:419–428. 2001. View Article : Google Scholar
|
3
|
Sun BQ, Lai XX, Gjesing B, Spangfort MD
and Zhong NS: Prevalence of sensitivity to cockroach allergens and
IgE cross-reactivity between cockroach and house dust mite
allergens in Chinese patients with allergic rhinitis and asthma.
Chin Med J (Engl). 123:3540–3544. 2010.PubMed/NCBI
|
4
|
He S, Zhang Z, Zhang H, et al: Analysis of
properties and proinflammatory functions of cockroach allergens Per
a 1.01s. Scand J Immunol. 74:288–295. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pan QR, Wang SM, Shang HS and Chew FT:
Identification and characterization of Per a 2, the Bla g 2
allergen homologue from American cockroach (Periplaneta
americana). J Allergy Clin Immunol. 117:S1152006. View Article : Google Scholar
|
6
|
Tan YW, Chan SL, Ong TC, et al: Structures
of two major allergens, Bla g 4 and Per a 4, from cockroaches and
their IgE binding epitopes. J Biol Chem. 284:3148–3157. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Khantisitthiporn O, Sookrung N,
Tungtrongchitr A, et al: Native troponin-T of the American
cockroach (CR), Periplaneta americana, binds to IgE in sera
of CR allergic Thais. Asian Pac J Allergy Immunol. 25:189–197.
2007.
|
8
|
Asturias JA, Gómez-Bayón N, Arilla MC, et
al: Molecular characterization of American cockroach tropomyosin
(Periplaneta americana allergen 7), a cross-reactive
allergen. J Immunol. 162:4342–4348. 1999.PubMed/NCBI
|
9
|
Sookrung N, Chaicumpa W, Tungtrongchitr A,
et al: Periplaneta americana arginine kinase as a major
cockroach allergen among Thai patients with major cockroach
allergies. Environ Health Perspect. 114:875–880. 2006. View Article : Google Scholar
|
10
|
Sudha VT, Arora N, Gaur SN, Pasha S and
Singh BP: Identification of a serine protease as a major allergen
(Per a 10) of Periplaneta americana. Allergy. 63:768–776.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sookrung N and Chaicumpa W: A revisit to
cockroach allergens. Asian Pac J Allergy Immunol. 28:95–106.
2010.PubMed/NCBI
|
12
|
Kang BC, Johnson J, Morgan C and Chang JL:
The role of immunotherapy in cockroach asthma. J Asthma.
25:205–218. 1988. View Article : Google Scholar : PubMed/NCBI
|
13
|
Srivastava D, Gaur SN, Arora N and Singh
BP: Clinico-immunological changes post-immunotherapy with
Periplaneta americana. Eur J Clin Invest. 41:879–888. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sharma V, Singh BP, Gaur SN, Pasha S and
Arora N: Bioinformatics and immunologic investigation on B and T
cell epitopes of Cur I 3, a major allergen of Curvularia
lunata. J Proteome Res. 8:2650–2655. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang HW, Lin YC, Pai TW and Chang HT:
Prediction of B-cell linear epitopes with a combination of support
vector machine classification and amino acid propensity
identification. J Biomed Biotechnol. 2011:4328302011.
|
16
|
Jiminez-Lopez JC, Kotchoni SO,
Rodríguez-García MI and Alché JD: Structure and functional features
of olive pollen pectin methylesterase using homology modeling and
molecular docking methods. J Mol Model. 18:4965–4984. 2012.
View Article : Google Scholar
|
17
|
Nielsen M, Lund O, Buus S and Lundegaard
C: MHC class II epitope predictive algorithms. Immunology.
130:319–328. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Larkin MA, Blackshields G, Brown NP, et
al: Clustal W and Clustal X version 2.0. Bioinformatics.
23:2947–2948. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kumar S, Nei M, Dudley J and Tamura K:
MEGA: a biologist-centric software for evolutionary analysis of DNA
and protein sequences. Brief Bioinform. 9:299–306. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hopp TP and Woods KR: Prediction of
protein antigenic determinants from amino acid sequences. Proc Natl
Acad Sci USA. 78:3824–3828. 1981. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kyte J and Doolittle RF: A simple method
for displaying the hydropathic character of a protein. J Mol Biol.
157:105–132. 1982. View Article : Google Scholar : PubMed/NCBI
|
22
|
Karplus PA and Schulz GE: Prediction of
chain flexibility in proteins. Naturwissenschaften. 72:212–213.
1985. View Article : Google Scholar
|
23
|
Emini EA, Hughes JV, Perlow D and Boger J:
Induction of hepatitis A virus-neutralizing antibody by a
virus-specific synthetic peptide. J Virol. 55:836–839.
1985.PubMed/NCBI
|
24
|
Jameson B and Wolf H: The antigenic index:
a novel algorithm for predicting antigenic determinants. Comput
Appl Biosci. 4:181–186. 1988.PubMed/NCBI
|
25
|
Kolaskar A and Tongaonkar PC: A
semi-empirical method for prediction of antigenic determinants on
protein antigens. FEBS Lett. 276:172–174. 1990. View Article : Google Scholar : PubMed/NCBI
|
26
|
Larsen JE, Lund O and Nielsen M: Improved
method for predicting linear B-cell epitopes. Immunome Res.
2:22006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zheng LN, Lin H, Pawar R, Li ZX and Li MH:
Mapping IgE binding epitopes of major shrimp (Penaeus
monodon) allergen with immunoinformatics tools. Food Chem
Toxicol. 49:2954–2960. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang X and Yu X: An introduction to
epitope prediction methods and software. Rev Med Virol. 19:77–96.
2009. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Rammensee HG, Friede T and Stevanoviíc S:
MHC ligands and peptide motifs: first listing. Immunogenetics.
41:178–228. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nielsen M and Lund O: NN-align. An
artificial neural network-based alignment algorithm for MHC class
II peptide binding prediction. BMC Bioinformatics. 10:2962009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang P, Sidney J, Kim Y, et al: Peptide
binding predictions for HLA DR, DP and DQ molecules. BMC
Bioinformatics. 11:5682010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pascal M, Konstantinou GN, Masilamani M,
Lieberman J and Sampson HA: In silico prediction of Ara h 2 T cell
epitopes in peanut-allergic children. Clin Exp Allergy. 43:116–127.
2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Baena-Cagnani CE, Serra H, Teijeiro A and
Croce JS: Prevention of allergy and asthma. Clin Exp Allergy Rev.
3:51–57. 2003. View Article : Google Scholar
|
34
|
Moldaver D and Larché M: Immunotherapy
with peptides. Allergy. 66:784–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lin J, Bardina L, Shreffler WG, et al:
Development of a novel peptide microarray for large-scale epitope
mapping of food allergens. J Allergy Clin Immunol. 124:315–322.
2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li GF, Wang Y, Zhang ZS, et al:
Identification of immunodominant Th1-type T cell epitopes from
Schistosoma japonicum 28 kDa glutathione-S-transferase, a
vaccine candidate. Acta Biochim Biophys Sin (Shanghai). 37:751–758.
2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nair S, Kukreja N, Singh BP and Arora N:
Identification of B cell epitopes of alcohol dehydrogenase allergen
of Curvularia lunata. PLoS One. 6:e200202011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pomés A: Relevant B cell epitopes in
allergic disease. Int Arch Allergy Immunol. 152:1–11. 2010.
|
39
|
Nielsen M, Justesen S, Lund O, Lundegaard
C and Buus S: NetMHCIIpan-2.0 - Improved pan-specific HLA-DR
predictions using a novel concurrent alignment and weight
optimization training procedure. Immunome Res. 6:92010. View Article : Google Scholar : PubMed/NCBI
|