1
|
Zipes DP and Wellens HJ: Sudden cardiac
death. Circulation. 98:2334–2351. 1998. View Article : Google Scholar
|
2
|
Spooner PM, Albert C, Benjamin EJ, et al:
Sudden cardiac death, genes, and arrhythmogenesis: consideration of
new population and mechanistic approaches from a National Heart,
Lung, and Blood Institute workshop, Part II. Circulation.
103:2447–2452. 2001. View Article : Google Scholar
|
3
|
Zipes DP, Camm AJ, Borggrefe M, et al:
European Heart Rhythm Association; Heart Rhythm Society; American
College of Cardiology; American Heart Association Task Force;
European Society of Cardiology Committee for Practice Guidelines:
ACC/AHA/ESC 2006 guidelines for management of patients with
ventricular arrhythmias and the prevention of sudden cardiac death:
a report of the American College of Cardiology/American Heart
Association Task Force and the European Society of Cardiology
Committee for Practice Guidelines (Writing Committee to Develop
Guidelines for Management of Patients With Ventricular Arrhythmias
and the Prevention of Sudden Cardiac Death). J Am Coll Cardiol.
48:e247–e346. 2006.
|
4
|
Friedlander Y, Siscovick DS, Weinmann S,
et al: Family history as a risk factor for primary cardiac arrest.
Circulation. 97:155–160. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jouven X, Desnos M, Guerot C and
Ducimetière P: Predicting sudden death in the population: the Paris
Prospective Study I. Circulation. 99:1978–1983. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kaikkonen KS, Kortelainen ML, Linna E and
Huikuri HV: Family history and the risk of sudden cardiac death as
a manifestation of an acute coronary event. Circulation.
114:1462–1467. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Novotny T, Kadlecova J, Raudenska M, et
al: Mutation analysis ion channel genes ventricular fibrillation
survivors with coronary artery disease. Pacing Clin Electrophysiol.
34:742–749. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rook MB, Evers MM, Vos MA and Bierhuizen
MF: Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc
Res. 93:12–23. 2012. View Article : Google Scholar
|
9
|
Schroeter A, Walzik S, Blechschmidt S,
Haufe V, Benndorf K and Zimmer T: Structure and function of splice
variants of the cardiac voltage-gated sodium channel Na(v)1.5. J
Mol Cell Cardiol. 49:16–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tfelt-Hansen J, Winkel BG, Grunnet M and
Jespersen T: Inherited cardiac diseases caused by mutations in the
Nav1.5 sodium channel. J Cardiovasc Electrophysiol. 21:107–115.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kapplinger JD, Tester DJ, Alders M, et al:
An international compendium of mutations in the SCN5A-encoded
cardiac sodium channel in patients referred for Brugada syndrome
genetic testing. Heart Rhythm. 7:33–46. 2010. View Article : Google Scholar
|
12
|
Remme CA, Wilde AA and Bezzina CR: Cardiac
sodium channel overlap syndromes: different faces of SCN5A
mutations. Trends Cardiovasc Med. 18:78–87. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ruan Y, Liu N and Priori SG: Sodium
channel mutations and arrhythmias. Nat Rev Cardiol. 6:337–348.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang DW, Desai RR, Crotti L, et al:
Cardiac sodium channel dysfunction in sudden infant death syndrome.
Circulation. 115:368–376. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Watanabe H, Nogami A, Ohkubo K, et al:
Electrocardiographic characteristics and SCN5A mutations in
idiopathic ventricular fibrillation associated with early
repolarization. Circ Arrhythm Electrophysiol. 4:874–881. 2011.
View Article : Google Scholar
|
16
|
Park JK, Martin LJ, Zhang X, Jegga AG and
Benson DW: Genetic variants in SCN5A promoter are associated with
arrhythmia phenotype severity in patients with heterozygous
loss-of-function mutation. Heart Rhythm. 9:1090–1096. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Marangoni S, Di Resta C, Rocchetti M, et
al: A Brugada syndrome mutation (p. S216L) and its modulation by
pH558R polymorphism: standard and dynamic characterization.
Cardiovasc Res. 91:606–616. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cheng J, Tester DJ, Tan BH, et al: The
common African American polymorphism SCN5A-S1103Y interacts with
mutation SCN5A-R680H to increase late Na current. Physiol Genomics.
43:461–466. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shinlapawittayatorn K, Du XX, Liu H,
Ficker E, Kaufman ES and Deschênes I: A common SCN5A polymorphism
modulates the biophysical defects of SCN5A mutations. Heart Rhythm.
8:455–462. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lahtinen AM, Noseworthy PA, Havulinna AS,
et al: Common genetic variants associated with sudden cardiac
death: the FinSCDgen study. PLoS One. 7:e416752012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu D, Viskin S, Oliva A, et al: Novel
mutation in the SCN5A gene associated with arrhythmic storm
development during acute myocardial infarction. Heart Rhythm.
4:1072–1080. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Elmas E, Bugert P, Popp T, Lang S, Weiss
C, Behnes M, Borggrefe M and Kälsch T: The P-selectin gene
polymorphism Val168Met: a novel risk marker for the occurrence of
primary ventricular fibrillation during acute myocardial
infarction. J Cardiovasc Electrophysiol. 21:1260–1265. 2010.
View Article : Google Scholar
|
23
|
Bugert P, Lese A, Meckies J, Zieger W,
Eichler H and Klüter H: Optimized sensitivity of allele-specific
PCR for prenatal typing of human platelet alloantigen single
nucleotide polymorphisms. Biotechniques. 35:170–174. 2003.
|
24
|
Bezzina CR, Shimizu W, Yang P, et al:
Common sodium channel promoter haplotype in asian subjects
underlies variability in cardiac conduction. Circulation.
113:338–344. 2006. View Article : Google Scholar
|
25
|
Zhang T, Moss A, Cong P, et al: LQTS gene
LOVD database. Hum Mutat. 31:E1801–E1810. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ackerman MJ, Siu BL, Sturner WQ, Tester
DJ, Valdivia CR, Makielski JC and Towbin JA: Postmortem molecular
analysis of SCN5A defects in sudden infant death syndrome. JAMA.
286:2264–2269. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Takahata T, Yasui-Furukori N, Sasaki S,
Igarashi T, Okumura K, Munakata A and Tateishi T: Nucleotide
changes in the translated region of SCN5A from Japanese patients
with Brugada syndrome and control subjects. Life Sci. 72:2391–2399.
2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gouas L, Nicaud V, Berthet M, Forhan A,
Tiret L, Balkau B and Guicheney P: Association of KCNQ1, KCNE1,
KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy
population. Eur J Hum Genet. 13:1213–1222. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lai LP, Su YN, Hsieh FJ, et al: Denaturing
high-performance liquid chromatography screening of the long QT
syndrome-related cardiac sodium and potassium channel genes and
identification of novel mutations and single nucleotide
polymorphisms. J Hum Genet. 50:490–496. 2005. View Article : Google Scholar
|
30
|
Arnestad M, Crotti L, Rognum TO, et al:
Prevalence of long-QT syndrome gene variants in sudden infant death
syndrome. Circulation. 115:361–367. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang Y, Chang B, Hu S, et al: Single
nucleotide polymorphisms and haplotype of four genes encoding
cardiac ion channels in Chinese and their association with
arrhythmia. Ann Noninvasive Electrocardiol. 13:180–190. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ackerman MJ, Splawski I, Makielski JC, et
al: Spectrum and prevalence of cardiac sodium channel variants
among black, white, Asian, and Hispanic individuals: implications
for arrhythmogenic susceptibility and Brugada/long QT syndrome
genetic testing. Heart Rhythm. 1:600–607. 2004. View Article : Google Scholar
|
33
|
Wang Q, Chen S, Chen Q, et al: The common
SCN5A mutation R1193Q causes LQTS-type electrophysiological
alterations of the cardiac sodium channel. J Med Genet. 41:e662004.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sun A, Xu L, Wang S, et al: SCN5A R1193Q
polymorphism associated with progressive cardiac conduction defects
and long QT syndrome in a Chinese family. J Med Genet. 45:127–128.
2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang H, Zhao J, Barrane FZ, Champagne J
and Chahine M: Nav1.5/R1193Q polymorphism is associated with both
long QT and Brugada syndromes. Can J Cardiol. 22:309–313. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kwon HW, Lee SY, Kwon BS, et al: Long QT
syndrome and dilated cardiomyopathy with SCN5A p. R1193Q
polymorphism: cardioverter-defibrillator implantation at 27 months.
Pacing Clin Electrophysiol. 35:e243–e246. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kapplinger JD, Tester DJ, Salisbury BA, et
al: Spectrum and prevalence of mutations from the first 2,500
consecutive unrelated patients referred for the FAMILION long QT
syndrome genetic test. Heart Rhythm. 6:1297–1303. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Olesen MS, Yuan L, Liang B, et al: High
prevalence of long QT syndrome-associated SCN5A variants in
patients with early-onset lone atrial fibrillation. Circ Cardiovasc
Genet. 5:450–459. 2012. View Article : Google Scholar : PubMed/NCBI
|