1
|
Altschul R, Hoffer A and Stephen JD:
Influence of nicotinic acid on serum cholesterol in man. Arch
Biochem Biophys. 54:558–559. 1955. View Article : Google Scholar : PubMed/NCBI
|
2
|
Carlson LA: Nicotinic acid: the
broad-spectrum lipid drug. A 50th anniversary review. J Intern Med.
258:94–114. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Figge HL, Figge J, Souney PF, et al:
Nicotinic acid: a review of its clinical use in the treatment of
lipid disorders. J Pharm Pharmacol. 8:287–294. 1988.PubMed/NCBI
|
4
|
Offermanns S: The nicotinic acid receptor
GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends
Pharmacol Sci. 27:384–390. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gille A, Bodor ET, Ahmed K, et al:
Nicotinic acid: pharmacological effects and mechanisms of action.
Annu Rev Pharmacol Toxicol. 48:79–106. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Morrow JD, Parsons WG IIIrd and Roberts LJ
IInd: Release of markedly increased quantities of prostaglandin D2
in vivo in humans following the administration of nicotinic acid.
Prostaglandins. 38:263–274. 1989. View Article : Google Scholar : PubMed/NCBI
|
7
|
Andersson RGG, Aberg G, Brattsand R, et
al: Studies on the mechanism of flush induced by nicotinic acid.
Acta Pharmacol Toxicol (Copenh). 41:1–10. 1977. View Article : Google Scholar : PubMed/NCBI
|
8
|
Benyó Z, Gille A, Kero J, et al: GPR109A
(PUMA-G/HM74A) mediates nicotinic acid–induced flushing. J Clin
Invest. 115:3634–3640. 2005.PubMed/NCBI
|
9
|
Tunaru S, Kero J, Schaub A, et al: PUMA-G
and HM74 are receptors for nicotinic acid and mediate its
anti-lipolytic effect. Nat Med. 9:352–355. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kostylina G, Simon D, Fey MF, et al:
Neutrophil apoptosis mediated by nicotinic acid receptors
(GPR109A). Cell Death Differ. 15:134–142. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao S, Jiang H, Wang W, et al: Cloning
and developmental expression of the Xenopus Nkx6 genes. Dev Genes
Evol. 217:477–483. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shi Y, Zhao S, Li J, et al: Islet-1 is
required for ventral neuron survival in Xenopus. Biochem Biophys
Res Commun. 388:506–510. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Downey GP, Chan CK, Trudel S, et al: Actin
assembly in electropermeabilized neutrophils: role of intracellular
calcium. J Cell Biol. 110:1975–1982. 1990. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoneda M, Nishizaki T, Tasaka K, et al:
Changes in actin network during calcium-induced exocytosis in
permeabilized GH3 cells: calcium directly regulates F-actin
disassembly. J Endocrinol. 166:677–687. 2000. View Article : Google Scholar
|
15
|
Forscher P: Calcium and
polyphosphoinositide control of cytoskeletal dynamics. Trends
Neurosci. 12:468–474. 1989. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rosado JA and Sage SO: The actin
cytoskeleton in store-mediated calcium entry. J Physiol.
526:221–229. 2000. View Article : Google Scholar
|
17
|
Wilson MT, Kisaalita WS and Keith CH:
Glutamate-induced changes in the pattern of hippocampal dendrite
outgrowth: a role for calcium-dependent pathways and the
microtubule cytoskeleton. J Neurobiol. 43:159–172. 2000. View Article : Google Scholar
|
18
|
Sheets L, Ransom DG, Mellgren EM, et al:
Zebrafish melanophilin facilitates melanosome dispersion by
regulating dynein. Curr Biol. 17:1721–1734. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yamasaki M, Churchill GC and Galione A:
Calcium signalling by nicotinic acid adenine dinucleotide phosphate
(NAADP). FEBS J. 272:4598–4606. 2005. View Article : Google Scholar
|
20
|
Aarhus R, Graeff RM, Dickey DM, et al:
ADP-ribosyl cyclase and CD38 catalyze the synthesis of a
calcium-mobilizing metabolite from NADP. J Biol Chem.
270:30327–30333. 1995. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wilson H and Galione A: Differential
regulation of nicotinic acid–adenine dinucleotide phosphate and
cADP-ribose production by cAMP and cGMP. Biochem J. 331:837–843.
1998.
|
22
|
Rah SY, Mushtaq M, Nam TS, et al:
Generation of cyclic ADP-ribose and nicotinic acid adenine
dinucleotide phosphate by CD38 for Ca2+ signaling in
interleukin-8-treated lymphokine-activated killer cells. J Biol
Chem. 285:21877–21887. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sobue K, Kanda K, Adachi J, et al:
Calmodulin-binding proteins that interact with actin filaments in a
Ca2+-dependent flip-flop manner: survey in brain and
secretory tissues. Proc Natl Acad Sci USA. 80:6868–6871. 1983.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Shin DM, Zhao XS, Zeng W, et al: The
mammalian Sec6/8 complex interacts with Ca2+ signaling
complexes and regulates their activity. J Cell Biol. 150:1101–1112.
2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Constantin B, Meerschaert K,
Vandekerckhove J, et al: Disruption of the actin cytoskeleton of
mammalian cells by the capping complex actin-fragmin is inhibited
by actin phosphorylation and regulated by Ca2+ ions. J
Cell Sci. 111:1695–1706. 1998.
|
26
|
Brown SS, Yamamoto K and Spudich JA: A
40,000-dalton protein from Dictyostelium discoideum affects
assembly properties of actin in a Ca2+-dependent manner.
J Cell Biol. 93:205–210. 1982. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yamamoto H, Fukunaga K, Tanaka E, et al:
Ca2+- and calmodulin-dependent phosphorylation of
microtubule-associated protein 2 and tau factor, and inhibition of
microtubule assembly. J Neurochem. 41:1119–1125. 1983.
|
28
|
Gradin HM, Marklund U, Larsson N, et al:
Regulation of microtubule dynamics by
Ca2+/calmodulin-dependent kinase IV/Gr-dependent
phosphorylation of oncoprotein 18. Mol Cell Biol. 17:3459–3467.
1997.PubMed/NCBI
|