1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
2
|
Hunter KD, Parkinson EK and Harrison PR:
Profiling early head and neck cancer. Nat Rev Cancer. 5:127–135.
2005. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Pai SI and Westra WH: Molecular pathology
of head and neck cancer: implications for diagnosis, prognosis, and
treatment. Annu Rev Pathol. 4:49–70. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stadler ME, Patel MR, Couch ME and Hayes
DN: Molecular biology of head and neck cancer: risks and pathways.
Hematol Oncol Clin North Am. 22:1099–1124. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tuyns AJ: Aetiology of head and neck
cancer: tobacco, alcohol and diet. Adv Otorhinolaryngol. 46:98–106.
1991.PubMed/NCBI
|
6
|
D’Souza G and Dempsey A: The role of HPV
in head and neck cancer and review of the HPV vaccine. Prev Med.
53(Suppl 1): S5–S11. 2011.PubMed/NCBI
|
7
|
Goh HK, Ng YH and Teo DT: Minimally
invasive surgery for head and neck cancer. Lancet Oncol.
11:281–286. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Le Tourneau C, Faivre S and Siu LL:
Molecular targeted therapy of head and neck cancer: review and
clinical development challenges. Eur J Cancer. 43:2457–2466.
2007.PubMed/NCBI
|
9
|
Chisholm E, Bapat U, Chisholm C, Alusi G
and Vassaux G: Gene therapy in head and neck cancer: a review.
Postgrad Med J. 83:731–737. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
De Costa AM and Young MR: Immunotherapy
for head and neck cancer: advances and deficiencies. Anticancer
Drugs. 22:674–681. 2011.PubMed/NCBI
|
11
|
Brennan P and Boffetta P: Mechanistic
considerations in the molecular epidemiology of head and neck
cancer. IARC Sci Publ; pp. 393–414. 2004
|
12
|
Leong PL, Xi S, Drenning SD, et al:
Differential function of STAT5 isoforms in head and neck cancer
growth control. Oncogene. 21:2846–2853. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fan GK, Fujieda S, Sunaga H, et al:
Expression of protein p27 is associated with progression and
prognosis in laryngeal cancer. Laryngoscope. 109:815–820. 1999.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yuen PW, Man M, Lam KY and Kwong YL:
Clinicopathological significance of p16 gene expression in the
surgical treatment of head and neck squamous cell carcinomas. J
Clin Pathol. 55:58–60. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pavelić K, Krizanac S, Cacev T, et al:
Aberration of FHIT gene is associated with increased tumor
proliferation and decreased apoptosis-clinical evidence in lung and
head and neck carcinomas. Mol Med. 7:442–453. 2001.PubMed/NCBI
|
16
|
Lee HJ, Kim MS, Shin JM, et al: The
expression patterns of deubiquitinating enzymes, USP22 and Usp22.
Gene Expr Patterns. 6:277–284. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang XY, Varthi M, Sykes SM, et al: The
putative cancer stem cell marker USP22 is a subunit of the human
SAGA complex required for activated transcription and cell-cycle
progression. Mol Cell. 29:102–111. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Glinsky GV, Berezovska O and Glinskii AB:
Microarray analysis identifies a death-from-cancer signature
predicting therapy failure in patients with multiple types of
cancer. J Clin Invest. 115:1503–1521. 2005. View Article : Google Scholar
|
19
|
Ning J, Zhang J, Liu W, Lang Y, Xue Y and
Xu S: Overexpression of ubiquitin-specific protease 22 predicts
poor survival in patients with early-stage non-small cell lung
cancer. Eur J Histochem. 56:e462012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li ZH, Yu Y, Du C, et al: RNA
interference-mediated USP22 gene silencing promotes human brain
glioma apoptosis and induces cell cycle arrest. Oncol Lett.
5:1290–1294. 2013.PubMed/NCBI
|
21
|
Ling SB, Sun DG, Tang B, et al: Knock-down
of USP22 by small interfering RNA interference inhibits HepG2 cell
proliferation and induces cell cycle arrest. Cell Mol Biol
(Noisy-le-grand). 58(Suppl): OL1803–OL1808. 2012.PubMed/NCBI
|
22
|
Henschel A, Buchholz F and Habermann B:
DEQOR: a web-based tool for the design and quality control of
siRNAs. Nucleic Acids Res. 32:W113–W120. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Arens C: Transoral treatment strategies
for head and neck tumors. GMS Curr Top Otorhinolaryngol Head Neck
Surg. 11:Doc052012.PubMed/NCBI
|
24
|
Zhao Y, Lang G, Ito S, et al: A TFTC/STAGA
module mediates histone H2A and H2B deubiquitination, coactivates
nuclear receptors, and counteracts heterochromatin silencing. Mol
Cell. 29:92–101. 2008. View Article : Google Scholar
|
25
|
Ovaa H, Kessler BM, Rolén U, et al:
Activity-based ubiquitin-specific protease (USP) profiling of
virus-infected and malignant human cells. Proc Natl Acad Sci USA.
101:2253–2258. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Atanassov BS, Evrard YA, Multani AS, et
al: Gcn5 and SAGA regulate shelterin protein turnover and telomere
maintenance. Mol Cell. 35:352–364. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Smith S: The SAGA continues... to the end.
Mol Cell. 35:256–258. 2009. View Article : Google Scholar
|
28
|
Glinsky GV: Genomic models of metastatic
cancer: functional analysis of death-from-cancer signature genes
reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype
with altered cell cycle control and activated Polycomb Group (PcG)
protein chromatin silencing pathway. Cell Cycle. 5:1208–1216.
2006.
|
29
|
Glinsky GV: Death-from-cancer signatures
and stem cell contribution to metastatic cancer. Cell Cycle.
4:1171–1175. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liang J, Zhang X, Xie S, et al:
Ubiquitin-specific protease 22: a novel molecular biomarker in
glioma prognosis and therapeutics. Med Oncol. 31:8992014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chipumuro E and Henriksen MA: The
ubiquitin hydrolase USP22 contributes to 3′-end processing of
JAK-STAT-inducible genes. FASEB J. 26:842–854. 2012.PubMed/NCBI
|
32
|
Schrecengost RS, Dean JL, Goodwin JF, et
al: USP22 regulates oncogenic signaling pathways to drive lethal
cancer progression. Cancer Res. 74:272–286. 2014. View Article : Google Scholar : PubMed/NCBI
|