1
|
Adams LA, Lymp JF, St Sauver J, et al: The
natural history of nonalcoholic fatty liver disease: a
population-based cohort study. Gastroenterology. 129:113–121. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Farrell GC and Larter CZ: Nonalcoholic
fatty liver disease: from steatosis to cirrhosis. Hepatology. 43(2
Suppl 1): S99–S112. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Marra F, Gastaldelli A, Svegliati Baroni
G, Tell G and Tiribelli C: Molecular basis and mechanisms of
progression of non-alcoholic steatohepatitis. Trends Mol Med.
14:72–81. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang BH, Weltman M and Farrell GC: Does
steatohepatitis impair liver regeneration? A study in a dietary
model of non-alcoholic steatohepatitis in rats. J Gastroenterol
Hepatol. 14:133–137. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rinella ME, Elias MS, Smolak RR, et al:
Mechanisms of hepatic steatosis in mice fed a lipogenic methionine
choline-deficient diet. J Lipid Res. 49:1068–1076. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sutti S, Jindal A, Locatelli I, et al:
Adaptive immune responses triggered by oxidative stress contribute
to hepatic inflammation in NASH. Hepatology. 59:886–897. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Pogribny IP and Beland FA: Role of
microRNAs in the regulation of drug metabolism and disposition
genes in diabetes and liver disease. Expert Opin Drug Metab
Toxicol. 9:713–724. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar
|
10
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartel DP: MicroRNAs: target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Najafi-Shoushtari SH, Kristo F, Li Y, et
al: MicroRNA-33 and the SREBP host genes cooperate to control
cholesterol homeostasis. Science. 328:1566–1569. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
El Ouaamari A, Baroukh N, Martens GA, et
al: miR-375 targets 3′-phosphoinositide-dependent protein kinase-1
and regulates glucose-induced biological responses in pancreatic
beta-cells. Diabetes. 57:2708–2717. 2008.
|
14
|
Shan Y, Zheng J, Lambrecht RW and
Bonkovsky HL: Reciprocal effects of micro-RNA-122 on expression of
heme oxygenase-1 and hepatitis C virus genes in human hepatocytes.
Gastroenterology. 133:1166–1174. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ogawa T, Enomoto M, Fujii H, et al:
MicroRNA-221/222 upregulation indicates the activation of stellate
cells and the progression of liver fibrosis. Gut. 61:1600–1609.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Murakami Y, Toyoda H, Tanaka M, et al: The
progression of liver fibrosis is related with overexpression of the
miR-199 and 200 families. PLoS One. 6:e160812011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Murakami Y, Toyoda H, Tanahashi T, et al:
Comprehensive miRNA expression analysis in peripheral blood can
diagnose liver disease. PLoS One. 7:e483662012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang H, Li QY, Guo ZZ, et al: Serum
levels of microRNAs can specifically predict liver injury of
chronic hepatitis B. World J Gastroenterol. 18:5188–5196.
2012.PubMed/NCBI
|
19
|
Pogribny IP, Starlard-Davenport A,
Tryndyak VP, et al: Difference in expression of hepatic microRNAs
miR-29c, miR-34a, miR-155, and miR-200b is associated with
strain-specific susceptibility to dietary nonalcoholic
steatohepatitis in mice. Lab Invest. 90:1437–1446. 2010. View Article : Google Scholar
|
20
|
Cheung O, Puri P, Eicken C, et al:
Nonalcoholic steatohepatitis is associated with altered hepatic
MicroRNA expression. Hepatology. 48:1810–1820. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Alenghat T, Meyers K, Mullican SE, et al:
Nuclear receptor corepressor and histone deacetylase 3 govern
circadian metabolic physiology. Nature. 456:997–1000. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Fozzatti L, Park JW, Zhao L, Willingham MC
and Cheng SY: Oncogenic Actions of the Nuclear Receptor Corepressor
(NCOR1) in a Mouse Model of Thyroid Cancer. PLoS One. 8:e679542013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Nan YM, Han F, Kong LB, et al:
Adenovirus-mediated peroxisome proliferator activated receptor
gamma overexpression prevents nutritional fibrotic steatohepatitis
in mice. Scand J Gastroenterol. 46:358–369. 2011. View Article : Google Scholar
|
24
|
Jian-gao F; Chinese Liver Disease
Association. Guidelines for management of nonalcoholic fatty liver
disease: an updated and revised edition. Zhonghua Gan Zang Bing Za
Zhi. 18:163–166. 2010.PubMed/NCBI
|
25
|
Kleiner DE, Brunt EM, Van Natta M, et al;
Nonalcoholic Steatohepatitis Clinical Research Network. Design and
validation of a histological scoring system for nonalcoholic fatty
liver disease. Hepatology. 41:1313–1321. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
Relative Gene Expression Data using Real-Time Quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
|
27
|
Cheung HH, Davis AJ, Lee TL, Pang AL,
Nagrani S, Rennert OM and Chan WY: Methylation of an intronic
region regulates miR-199a in testicular tumor malignancy. Oncogene.
30:3404–3415. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI
|
29
|
Galli A, Crabb DW, Ceni E, et al:
Antidiabetic thiazolidinediones inhibit collagen synthesis and
hepatic stellate cell activation in vivo and in vitro.
Gastroenterology. 122:1924–1940. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009.PubMed/NCBI
|
31
|
Rottiers V and Näär AM: MicroRNAs in
metabolism and metabolic disorders. Nat Rev Mol Cell Biol.
13:239–250. 2012. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Dávalos A, Goedeke L, Smibert P, et al:
miR-33a/b contribute to the regulation of fatty acid metabolism and
insulin signaling. Proc Natl Acad Sci USA. 108:9232–9237.
2011.PubMed/NCBI
|
33
|
Poy MN, Eliasson L, Krutzfeldt J, et al: A
pancreatic islet-specific microRNA regulates insulin secretion.
Nature. 432:226–230. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Esau C, Davis S, Murray SF, et al: miR-122
regulation of lipid metabolism revealed by in vivo antisense
targeting. Cell Metab. 3:87–98. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chang J, Nicolas E, Marks D, et al:
miR-122, a mammalian liver-specific microRNA, is processed from hcr
mRNA and may downregulate the high affinity cationic amino acid
transporter CAT-1. RNA Biol. 1:106–113. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Krützfeldt J, Rajewsky N, Braich R, et al:
Silencing of microRNAs in vivo with ‘antagomirs’. Nature.
438:685–689. 2005.
|
37
|
Li S, Chen X, Zhang H, et al: Differential
expression of microRNAs in mouse liver under aberrant energy
metabolic status. J Lipid Res. 50:1756–1765. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xu N, Zhang J, Shen C, et al:
Cisplatin-induced downregulation of miR-199a-5p increases drug
resistance by activating autophagy in HCC cell. Biochem Biophys Res
Commun. 423:826–831. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Fan KJ, Sun Q, et al: Functional
screening for miRNAs targeting Smad4 identified miR-199a as a
negative regulator of TGF-beta signalling pathway. Nucleic Acids
Res. 40:9286–9297. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Masotti A and Alisi A: Integrated
bioinformatics analysis of microRNA expression profiles for an
in-depth understanding of pathogenic mechanisms in non-alcoholic
fatty liver disease. J Gastroenterol Hepatol. 27:187–188. 2012.
View Article : Google Scholar
|
41
|
Gäbele E, Brenner DA and Rippe RA: Liver
fibrosis: signals leading to the amplification of the fibrogenic
hepatic stellate cell. Front Biosci. 8:d69–d77. 2003.PubMed/NCBI
|
42
|
Geerts A: History, heterogeneity,
developmental biology, and functions of quiescent hepatic stellate
cells. Semin Liver Dis. 21:311–335. 2001. View Article : Google Scholar
|
43
|
Milani S, Herbst H, Schuppan D, et al:
Procollagen expression by nonparenchymal rat liver cells in
experimental biliary fibrosis. Gastroenterology. 98:175–184.
1990.PubMed/NCBI
|
44
|
Marra F: Hepatic stellate cells and the
regulation of liver inflammation. J Hepatol. 31:1120–1130. 1999.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Marra F, Efsen E, Romanelli RG, et al:
Ligands of peroxisome proliferator-activated receptor gamma
modulate profibrogenic and proinflammatory actions in hepatic
stellate cells. Gastroenterology. 119:466–478. 2000. View Article : Google Scholar
|
46
|
Li P, Fan W, Xu J, et al: Adipocyte NCoR
knockout decreases PPARgamma phosphorylation and enhances PPARgamma
activity and insulin sensitivity. Cell. 147:815–826. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Ghisletti S, Huang W, Jepsen K, et al:
Cooperative NCoR/SMRT interactions establish a corepressor-based
strategy for integration of inflammatory and anti-inflammatory
signaling pathways. Genes Dev. 23:681–693. 2009. View Article : Google Scholar : PubMed/NCBI
|