1
|
Mazzanti R, Gramantieri L and Bolondi L:
Hepatocellular carcinoma: epidemiology and clinical aspects. Mol
Aspects Med. 29:130–143. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kawano Y, Sasaki A, Kai S, et al: Short-
and long-term outcomes after hepatic resection for hepatocellular
carcinoma with concomitant esophageal varices in patients with
cirrhosis. Ann Surg Oncol. 15:1670–1676. 2008. View Article : Google Scholar
|
3
|
Poon RT, Fan ST and Wong J: Risk factors,
prevention and management of postoperative recurrence after
resection of hepatocellular carcinoma. Ann Surg. 232:10–24. 2000.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mischak H, Allmaier G, Apweiler R, et al:
Recommendations for biomarker identification and qualification in
clinical proteomics. Sci Transl Med. 2:42–46. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mann CD, Neal CP, Garcea G, et al:
Prognostic molecular markers in hepatocellular carcinoma: a
systematic review. Eur J Cancer. 43:979–992. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang Y, Shen Z, Zhu Z, et al: Clinical
values of AFP, GPC3 mRNA in peripheral blood for prediction of
hepatocellular carcinoma recurrence following OLT:AFP, GPC3 mRNA
for prediction of HCC. Hepat Mon. 11:195–199. 2011.PubMed/NCBI
|
7
|
Huynh H: Molecularly targeted therapy in
hepatocellular carcinoma. Biochem Pharmacol. 80:550–560. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Marra M, Sordelli IM, Lombardi A, et al:
Molecular targets and oxidative stress biomarkers in hepatocellular
carcinoma: an overview. J Transl Med. 9:171–185. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gonzalez SA and Keeffe EB: Diagnosis of
hepatocellular carcinoma: role of tumor markers and liver biopsy.
Clin Liver Dis. 15:297–306. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zou ZQ, Ding YP, Long B, et al: Gpc-3 is a
notable diagnostic, prognostic and a latent targeted therapy marker
in hepatocellular carcinoma. Hepatogastroenterology. 57:1285–1290.
2010.
|
11
|
Capurro M, Wanless IR, Sherman M, et al:
Glypican-3: a novel serum and histochemical marker for
hepatocellular carcinoma. Gastroenterology. 125:89–97. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yamauchi N, Watanabe A, Hishinuma M, et
al: The glypican 3 oncofetal protein is a promising diagnostic
marker for hepatocellular carcinoma. Mod Pathol. 18:1591–1598.
2005.PubMed/NCBI
|
13
|
Libbrecht L, Severi T, Cassiman D, et al:
Glypican-3 expression distinguishes small hepatocellular carcinomas
from cirrhosis, dysplastic nodules, and focal nodular
hyperplasia-like nodules. Am J Surg Pathol. 30:1405–1411. 2006.
View Article : Google Scholar
|
14
|
Liovet JM, Chen Y, Wurmbach E, et al: A
molecular signature to discriminate dysplastic nodules from early
hepatocellular carcinoma in HCV-cirrhosis. Gastroenterology.
131:1758–1767. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakatsura T, Kageshita T, Ito S, et al:
Identification of glypican-3 as a novel tumor marker for melanoma.
Clin Cancer Res. 10:6612–6621. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Stadlmann S, Gueth U, Baumhoer D, et al:
Glypican-3 expression in primary and recurrent ovarian carcinomas.
Int J Gynecol Pathol. 26:341–344. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zynger DL, Dimov ND, Luan C, et al:
Glypican 3: a novel marker in testicular germ cell tumors. Am J
Surg Pathol. 30:1570–1575. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Baumhoer D, Tornillo L, Stadlmann S, et
al: Glypican 3 expression in human nonneoplastic, preneoplastic,
and neoplastic tissues: a tissue microarray analysis of 4,387
tissue samples. Am J Clin Pathol. 129:899–906. 2008. View Article : Google Scholar
|
19
|
Saikali Z and Sinnett D: Expression of
glypican 3 (GPC3) in embryonal tumors. Int J Cancer. 89:418–422.
2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim H, Xu GL, Borczuk AC, et al: The
heparan sulfate proteoglycan GPC3 is a potential lung tumor
suppressor. Am J Respir Cell Mol Biol. 29:694–701. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Murthy SS, Shen T, De Rienzo A, et al:
Expression of GPC3, an X-linked recessive overgrowth gene, is
silenced in malignant mesothelioma. Oncogene. 19:410–416. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Xiang YY, Ladeda V and Filmus J:
Glypican-3 expression is silenced in human breast cancer. Oncogene.
20:7408–7412. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhu ZW, Friess H, Wang L, et al: Enhanced
glypican-3 expression differentiates the majority of hepatocellular
carcinomas from benign hepatic disorders. Gut. 48:558–564. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Filmus J and Capurro M: The role of
glypican-3 in the regulation of body size and cancer. Cell Cycle.
7:2787–2790. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stigliano I, Puricelli L, Filmus J, et al:
Glypican-3 regulates migration, adhesion and actin cytoskeleton
organization in mammary tumor cells through Wnt signaling
modulation. Breast Cancer Res Treat. 114:251–262. 2009. View Article : Google Scholar
|
26
|
Filmus J, Church JG and Buick RN:
Isolation of a cDNA corresponding to a developmentally regulated
transcript in rat intestine. Mol Cell Biol. 8:4243–4249.
1998.PubMed/NCBI
|
27
|
Pilia G, Hughes-Benzie RM, MacKenzie A, et
al: Mutations in GPC3, a glypican gene, cause the
Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 12:241–247.
1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
De Cat B and David G: Developmental roles
of the glypicans. Semin Cell Dev Biol. 12:117–125. 2001.
|
29
|
Capurro MI, Xiang YY, Lobe C and Filmus J:
Glypican-3 promotes the growth of hepatocellular carcinoma by
stimulating canonical Wnt signaling. Cancer Res. 65:6245–6254.
2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ruan J, Liu F, Chen X, et al: Inhibition
of glypican-3 expression via RNA interference influences the growth
and invasive ability of the MHCC97-H human hepatocellular carcinoma
cell line. International journal of molecular medicine. 28:497–503.
2011.PubMed/NCBI
|
31
|
Yang J, Mani SA, Donaher JL, et al: Twist,
a master regulator of morphogenesis, plays an essential role in
tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(T)(-Delta Delta C) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Howard S, Deroo T, Fujita Y, et al: A
positive role of cadherin in Wnt/β-catenin signalling during
epithelial-mesenchymal transition. PloS one. 6:e238992011.
|
34
|
Yook JI, Li XY, Ota I, et al:
Wnt-dependent regulation of the E-cadherin repressor snail. Journal
of Biological Chemistry. 280:11740–11748. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Baeg GH and Perrimon N: Functional binding
of secreted molecules to heparan sulfate proteoglycans in
Drosophila. Curr Opin Cell Biol. 12:575–580. 2000.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Jackson SM, Nakato H, Sugiura M, et al:
dally, a Drosophila glypican, controls cellular responses to
the TGF-β-related morphogen Dpp. Development. 124:4113–4120.
1997.PubMed/NCBI
|
37
|
Perrimon N and Bernfield M: Specificities
of heparin sulphate proteoglycans in developmental processes.
Nature. 404:725–728. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Topczewsky J, Sepich DS, Myers DC, et al:
The zebrafish glypican knypek controls cell polarity during
gastrulation movements of convergent extension. Dev Cell.
1:251–264. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ohkarawa B, Yamamoto TS, Tada M and Ueno
N: Role of glypican 4 in the regulation of convergent extension
movements during gastrulation in Xenopus laevis.
Development. 130:2129–2138. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
De Cat B, Muyldermans SY, Coomans C, et
al: Processing by proprotein convertases is required for glypican-3
modulation of cell survival, Wnt signaling, and gastrulation
movements. J Cell Biol. 163:625–635. 2003.PubMed/NCBI
|
41
|
Kramer KL and Yost HJ: Heparan sulfate
core proteins in cell-cell signaling. Annu Rev Genet. 37:461–484.
2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Baeg GH, Lin X, Khare N, et al: Heparan
sulfate proteoglycans are critical for the organization of the
extracellular distribution of Wingless. Development. 128:87–94.
2001.PubMed/NCBI
|
43
|
Han C, Belenkaya TY, Wang B and Lin X:
Drosophila glypicans control the cell-to-cell movement of
hedgehog by a dynamin-independent process. Development.
131:601–611. 2004. View Article : Google Scholar
|
44
|
Lum L, Yao S, Mozer B, et al:
Identification of Hedgehog pathway components by RNAi in
Drosophila cultured cells. Science. 299:2039–2045. 2003.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Filmus J, Capurro M and Rast J: Glypicans.
Genome Biol. 9:2242008. View Article : Google Scholar
|
46
|
Song HH and Filmus J: The role of
glypicans in mammalian development. Biochim Biophys Acta.
1573:241–246. 2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Feitelson MA, Sun B, Satiroglu Tufan NL,
et al: Genetic mechanisms of hepatocarcinogenesis. Oncogene.
21:2593–2604. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kern MA, Breuhahn K and Schirmacher P:
Molecular pathogenesis of human hepatocellular carcinoma. Adv
Cancer Res. 86:67–112. 2002. View Article : Google Scholar : PubMed/NCBI
|
49
|
Satoh S, Daigo Y, Furukawa Y, et al: AXIN1
mutations in hepatocellular carcinomas, and growth suppression in
cancer cells by virus-mediated transfer of AXIN1. Nat Genet.
24:245–250. 2000. View
Article : Google Scholar : PubMed/NCBI
|
50
|
Yang J and Weinberg RA:
Epithelial-mesenchymal transition: at the crossroads of development
and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li X, Xu Y, Chen Y, et al: SOX2 promotes
tumor metastasis by stimulating epithelial-to-mesenchymal
transition via regulation of WNT/β-catenin signal network. Cancer
Lett. 336:379–389. 2013.PubMed/NCBI
|
52
|
van Zijl F, Zulehner G, Petz M, et al:
Epithelial-mesenchymal transition in hepatocellular carcinoma.
Future Oncol. 5:1169–1179. 2009.
|
53
|
Weinberg RA: Mechanisms of malignant
progression. Carcinogenesis. 29:1092–1095. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Thiery JP: Epithelial-mesenchymal
transitions in development and pathologies. Curr Opin Cell Biol.
15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI
|
55
|
Thompson EW and Newgreen DF: Carcinoma
invasion and metastasis: a role for epithelial-mesenchymal
transition? Cancer Res. 65:5991–5995. 2005. View Article : Google Scholar : PubMed/NCBI
|
56
|
Vincan E and Barker N: The upstream
components of the Wnt signalling pathway in the dynamic EMT and MET
associated with colorectal cancer progression. Clinical Exp
Metastasis. 25:657–663. 2008. View Article : Google Scholar : PubMed/NCBI
|
57
|
Prasad CP, Mirza S, Sharma G, et al:
Epigenetic alterations of CDH1 and APC genes: Relationship with
activation of Wnt/β-catenin Pathway in invasive ductal carcinoma of
breast. Life Sci. 83:318–325. 2008.PubMed/NCBI
|
58
|
Zhao JH, Luo Y, Jiang YG, et al: Knockdown
of β-Catenin through shRNA cause a reversal of EMT and metastatic
phenotypes induced by HIF-1α. Cancer Invest. 29:377–382. 2011.
|
59
|
Miyoshi A, Kitajima Y, Kido S, et al:
Snail accelerates cancer invasion by upregulating MMP expression
and is associated with poor prognosis of hepatocellular carcinoma.
Br J Cancer. 92:252–258. 2005.PubMed/NCBI
|
60
|
Liotta LA: Tumor invasion and metastases -
role of the extracellular matrix: Rhoads Memorial Award lecture.
Cancer Res. 46:1–7. 1986.PubMed/NCBI
|
61
|
Ban KC, Singh H, Krishnan R and Seow HF:
GSK-3beta phosphorylation and alteration of beta-catenin in
hepatocellular carcinoma. Cancer Lett. 199:201–208. 2003.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Lucero OM, Dawson DW, Moon RT and Chien
AJ: A reevaluation of the ‘oncogenic’ nature of Wnt/beta-catenin
signaling in melanoma and other cancers. Curr Oncol Rep.
12:314–318. 2010.
|
63
|
Sánchez-Tilló E, de Barrios O, Siles L, et
al: β-catenin/TCF4 complex induces the epithelial-to-mesenchymal
transition (EMT)-activator ZEB1 to regulate tumor invasiveness.
Proc Natl Acad Sci USA. 108:19204–19209. 2011.
|
64
|
Schmalhofer O, Brabletz S and Brabletz T:
E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer.
Cancer Metastasis Rev. 28:151–166. 2009.
|
65
|
Kim K, Daniels KJ and Hay ED:
Tissue-specific expression of beta-catenin in normal mesenchyme and
uveal melanomas and its effect on invasiveness. Exp Cell Res.
245:79–90. 1998. View Article : Google Scholar : PubMed/NCBI
|
66
|
Conacci-Sorrell M, Simcha I, Ben-Yedidia
T, et al: Autoregulation of E-cadherin expression by
cadherin-cadherin interactions: the roles of beta-catenin
signaling, Slug, and MAPK. J Cell Biol. 163:847–857. 2003.
View Article : Google Scholar
|
67
|
Onder TT, Gupta PB, Mani S, et al: Loss of
E-cadherin promotes metastasis via multiple downstream
transcriptional pathways. Cancer Res. 68:3645–3654. 2008.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Oh SJ, Shin JH, Kim TH, et al: β-Catenin
activation contributes to the pathogenesis of adenomyosis through
epithelial–mesenchymal transition. J Path. 231:210–222. 2013.
|