Induced pluripotent stem cell‑based therapies for inherited arrhythmias: Opportunities and challenges involved (Review)
- Authors:
- Guoliang Li
- Xin He
- Chaofeng Sun
-
Affiliations: Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China - Published online on: October 16, 2014 https://doi.org/10.3892/mmr.2014.2668
- Pages: 3-10
This article is mentioned in:
Abstract
Schwartz PJ, Stramba-Badiale M, Crotti L, et al: Prevalence of the congenital long-QT syndrome. Circulation. 120:1761–1740. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nader A, Massumi A, Cheng J and Razavi M: Inherited arrhythmic disorders: long QT and Brugada syndromes. Tex Heart Inst J. 34:67–75. 2007.PubMed/NCBI | |
Obeyesekere MN, Klein GJ, Modi S, et al: How to perform and interpret provocative testing for the diagnosis of Brugada syndrome, long-QT syndrome, and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 4:958–964. 2011. View Article : Google Scholar | |
Bartos DC, Duchatelet S, Burgess DE, et al: R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm. 8:48–55. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen YH, Xu SJ, Bendahhou S, et al: KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 299:251–254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tester DJ and Ackerman MJ: Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation. 123:1021–1037. 2011. View Article : Google Scholar | |
Antzelevitch C and Yan GX: J wave syndromes. Heart Rhythm. 7:549–558. 2010. View Article : Google Scholar | |
Antzelevitch C, Yan GX and Viskin S: Rationale for the use of the terms J-wave syndromes and early repolarization. J Am Coll Cardiol. 57:1587–1590. 2011. View Article : Google Scholar : PubMed/NCBI | |
Antzelevitch C: Genetic, molecular and cellular mechanisms underlying the J wave syndromes. Circ J. 76:1054–1065. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hayashi M, Denjoy I, Extramiana F, et al: Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 119:2426–2434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD and Coumel P: Catecholaminergic polymorphic ventricular-tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 91:1512–1519. 1995.PubMed/NCBI | |
Itzhaki I, Maizels L, Huber I, et al: Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol. 60:990–1000. 2012. View Article : Google Scholar : PubMed/NCBI | |
Laitinen PJ, Brown KM, Piippo K, et al: Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 103:485–490. 2001. View Article : Google Scholar : PubMed/NCBI | |
Priori SG, Napolitano C, Tiso N, et al: Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 103:196–200. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kauferstein S, Kiehne N, Neumann T, Pitschner H and Bratzke H: Cardiac gene defects can cause sudden cardiac death in young people. Dtsch Arztebl Int. 106:41–47. 2009.PubMed/NCBI | |
Mohamed U, Napolitano C and Priori SG: Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 18:791–797. 2007. View Article : Google Scholar : PubMed/NCBI | |
Delisle BP, Anson BD, Rajamani S and January CT: Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 94:1418–1428. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gong Q, Zhang L, Vincent GM, Horne BD and Zhou Z: Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome. Circulation. 116:17–24. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Naiki N, Ding WG, et al: A molecular mechanism for adrenergic-induced long QT syndrome. J Am Coll Cardiol. 63:819–827. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schwartz PJ, Spazzolini C, Priori SG, et al: Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 122:1272–1282. 2010. View Article : Google Scholar | |
Goel AK, Berger S, Pelech A and Dhala A: Implantable cardioverter defibrillator therapy in children with long QT syndrome. Pediatr Cardiol. 25:370–378. 2004.PubMed/NCBI | |
Benito B, Guasch E, Rivard L and Nattel S: Clinical and mechanistic issues in early repolarization of normal variants and lethal arrahythmia syndromes. J Am Coll Cardiol. 56:1177–1186. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Tanabe K, Ohnuki M, et al: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar | |
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun N, Longaker MT and Wu JC: Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle. 9:880–885. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki S, Yamamoto H, Miyoshi N, et al: Emerging methods for preparing iPS cells. Jpn J Clin Oncol. 42:773–779. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carey BW, Markoulaki S, Hanna J, et al: Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA. 106:157–162. 2009. View Article : Google Scholar : PubMed/NCBI | |
Desponts C and Ding S: Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol Biol. 636:207–218. 2010. View Article : Google Scholar | |
Hou P, Li Y, Zhang X, et al: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 341:651–654. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng W: Induced pluripotent stem cells: paths to new medicines. A catalyst for disease modelling, drug discovery and regenerative therapy. EMBO Rep. 11:161–165. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Zhang L-H and Xie X: iPSCs and small molecules: a reciprocal effort towards better approaches for drug discovery. Acta Pharmacol Sin. 34:765–776. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhu F, Yong J, et al: Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell. 3:587–590. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, et al: Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Reports. 1:283–292. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okamoto S and Takahashi M: Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophthalmol Vis Sci. 52:8785–8790. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mackay-Sim A: Patient-derived stem cells: pathways to drug discovery for brain diseases. Front Cell Neurosci. 7:292013. View Article : Google Scholar : PubMed/NCBI | |
Dimos JT, Rodolfa KT, Niakan KK, et al: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 321:1218–1221. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ebert AD, Yu J, Rose FF Jr, et al: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 457:277–281. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee G, Papapetrou EP, Kim H, et al: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 461:402–406. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park I-H, Arora N, Huo H, et al: Disease-specific induced pluripotent stem cells. Cell. 134:877–886. 2008. View Article : Google Scholar : PubMed/NCBI | |
Amenduni M, De Filippis R, Cheung AYL, et al: iPS cells to model CDKL5-related disorders. Eur J Hum Genet. 19:1246–1255. 2011. View Article : Google Scholar : PubMed/NCBI | |
Webb S: iPS cell technology gains momentum in drug discovery. Nat Rev Drug Discov. 8:263–264. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gunaseeli I, Doss MX, Antzelevitch C, Hescheler J and Sachinidis A: Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem. 17:759–766. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q: Progress and prospects in stem cell therapy and drug discovery. Acta Pharmacol Sin. 34:717–718. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mordwinkin NM, Burridge PW and Wu JC: A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res. 6:22–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Merkle FT and Eggan K: Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell. 12:656–668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siller R, Greenhough S, Park IH and Sullivan GJ: Modelling human disease with pluripotent stem cells. Curr Gene Ther. 13:99–110. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morishima T, Watanabe K, Niwa A, et al: Genetic correction of HAX 1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 99:19–27. 2014. View Article : Google Scholar | |
Wang Y, Zheng CG, Jiang Y, et al: Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res. 22:637–648. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choi SM, Kim Y, Shim JS, et al: Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 57:2458–2468. 2013. View Article : Google Scholar : PubMed/NCBI | |
Raya A, Rodriguez-Piza I, Guenechea G, et al: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 460:53–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kazuki Y, Hiratsuka M, Takiguchi M, et al: Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol Ther. 18:386–393. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li H, Haurigot V, Doyon Y, et al: In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 475:217–221. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Liu N, Rittelmeyer I, et al: Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol. 9:e10010992011. View Article : Google Scholar : PubMed/NCBI | |
Corti S, Nizzardo M, Simone C, et al: Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. 4:165ra1622012. View Article : Google Scholar : PubMed/NCBI | |
Fattahi F, Asgari S, Pournasr B, et al: Disease-corrected hepatocyte-like cells from familial hypercholesterolemia-induced pluripotent stem cells. Mol Biotechnol. 54:863–873. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lunn MR and Wang CH: Spinal muscular atrophy. Lancet. 371:2120–2133. 2008. View Article : Google Scholar : PubMed/NCBI | |
Robinton DA and Daley GQ: The promise of induced pluripotent stem cells in research and therapy. Nature. 481:295–305. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wernig M, Zhao J-P, Pruszak J, et al: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA. 105:5856–5861. 2008.PubMed/NCBI | |
Malan D, Friedrichs S, Fleischmann BK and Sasse P: Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circ Res. 109:841–847. 2011. View Article : Google Scholar | |
Matsa E, Rajamohan D, Dick E, et al: Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 32:952–962. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mehta A, Sequiera GL, Sudibyo Y, et al: Derivation and characterization of transgene free induced pluripotent stem cell derived cardiomyocytes from asian patient with long QT syndrome. Eur Heart J. 33:222012. | |
Itzhaki I, Maizels L, Huber I, et al: Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 471:225–229. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lahti AL, Kujala VJ, Chapman H, et al: Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech. 5:220–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moretti A, Bellin M, Welling A, et al: Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 363:1397–1409. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sadguna YB, Jianhua Z, Amanda H, et al: Loss of ikr in lqt2 patient iPS-derived cardiomyocytes: nonsense mediated decay as a potential mechanism? Abstract 15643. 2011, http://circ.ahajournals.org/cgi/content/meeting_abstract/124/21_MeetingAbstracts/A15643. | |
Yazawa M, Hsueh B, Jia X, et al: Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 471:230–234. 2011. View Article : Google Scholar : PubMed/NCBI | |
Egashira T, Yuasa S, Suzuki T, et al: Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res. 95:419–429. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsa E, Dixon JE, Medway C, et al: Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocyte. Eur Heart J. 35:1078–1087. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okata S, Yuasa S, Yamane T, Furukawa T and Fukuda K: The generation of induced pluripotent stem cells from a patient with KCNH2 G603D, without LQT2 disease associated symptom. J Med Dent Sci. 60:17–22. 2013.PubMed/NCBI | |
Schimpf R, Veltmann C, Wolpert C and Borggrefe M: Arrhythmogenic hereditary syndromes: Brugada Syndrome, long QT syndrome, short QT syndrome and CPVT. Minerva Cardioangiol. 58:623–636. 2010.PubMed/NCBI | |
Kron J, Oliver RP, Norsted S and Silka MJ: The automatic implantable cardioverter-defibrillator in young-patients. J Am Coll Cardiol. 16:896–902. 1990. View Article : Google Scholar : PubMed/NCBI | |
Groh WJ, Silka MJ, Oliver RP, Halperin BD, McAnulty JH and Kron J: Use of implantable cardioverter-defibrillators in the congenital long QT syndrome. Am J Cardiol. 78:703–706. 1996. View Article : Google Scholar : PubMed/NCBI | |
Perry GY and Kosar EM: Problems in managing patients with long QT syndrome and implantable cardioverter defibrillators: a report of two cases. Pacing Clin Electrophysiol. 19:863–867. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takebe T, Sekine K, Enomura M, et al: Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499:481–484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee AS, Tang C, Cao F, et al: Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle. 8:2608–2612. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cao F, Drukker M, Lin S, et al: Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells. 9:107–117. 2007. View Article : Google Scholar : PubMed/NCBI | |
Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V and Knoepfler PS: Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev. 22:37–50. 2013. View Article : Google Scholar : PubMed/NCBI | |
Esteban MA, Xu J, Yang J, et al: Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem. 284:17634–17640. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ezashi T, Telugu BPVL, Alexenko AP, Sachdev S, Sinha S and Roberts RM: Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA. 106:10993–10998. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Chen J, Ren J, et al: Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol. 1:46–54. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stacey GN, Crook JM, Hei D and Ludwig T: Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell. 13:385–388. 2013. View Article : Google Scholar : PubMed/NCBI |