1
|
Elias-Miró M, Massip-Salcedo M, Raila J,
et al: Retinol binding protein 4 and retinol in steatotic and
nonsteatotic rat livers in the setting of partial hepatectomy under
ischemia/reperfusion. Liver Transpl. 18:1198–1208. 2012.PubMed/NCBI
|
2
|
Varona MA, Soriano A, Aguirre-Jaime A, et
al: Statistical quality control charts for liver transplant process
indicators: evaluation of a single-center experience. Transplant
Proc. 44:1517–1522. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tang WH, Wu S, Wong TM, Chung SK and Chung
SS: Polyol pathway mediates iron-induced oxidative injury in
ischemic-reperfused rat heart. Free Radic Biol Med. 45:602–610.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li Q, Hwang YC, Ananthakrishnan R, et al:
Polyol pathway and modulation of ischemia-reperfusion injury in
Type 2 diabetic BBZ rat hearts. Cardiovasc Diabetol. 7:332008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Tang WH, Kravtsov GM, Sauert M, et al:
Polyol pathway impairs the function of SERCA and RyR in
ischemic-reperfused rat hearts by increasing oxidative
modifications of these proteins. J Mol Cell Cardiol. 49:58–69.
2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chu-Moyer MY, Ballinger WE, Beebe DA, et
al: SAR and species/stereo-selective metabolism of the sorbitol
dehydrogenase inhibitor, CP-470,711. Bioorg Med Chem Lett.
12:1477–1480. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schmidt RE, Dorsey DA, Beaudet LN, et al:
A potent sorbitol dehydrogenase inhibitor exacerbates sympathetic
autonomic neuropathy in rats with streptozotocin-induced diabetes.
Exp Neurol. 192:407–419. 2005. View Article : Google Scholar
|
8
|
Ramalho FS, Alfany-Fernandez I,
Casillas-Ramirez A, et al: Are angiotensin II receptor antagonists
useful strategies in steatotic and nonsteatotic livers in
conditions of partial hepatectomy under ischemia-reperfusion? J
Pharmacol Exp Ther. 329:130–140. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Suzuki S, Toledo-Pereyra LH, Rodriguez FJ
and Cejalvo D: Neutrophil infiltration as an important factor in
liver ischemia and reperfusion injury. Modulating effects of FK506
and cyclosporine. Transplantation. 55:1265–1272. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Berry MN and Friend DS: High-yield
preparation of isolated rat liver parenchymal cells: a biochemical
and fine structural study. J Cell Biol. 43:506–520. 1969.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang S, Chen T, Chen R, et al: Emodin
loaded solid lipid nanoparticles: preparation, characterization and
antitumor activity studies. Int J Pharm. 430:238–246. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lee HR, Kim HJ, Ko JS, et al: Comparative
characteristics of porous bioceramics for an osteogenic response in
vitro and in vivo. PLoS One. 8:e842722013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nikoletopoulou V, Markaki M, Palikaras K
and Tavernarakis N: Crosstalk between apoptosis, necrosis and
autophagy. Biochim Biophys Acta. 1883:3448–3459. 2013. View Article : Google Scholar
|
14
|
So PW and Fuller BJ: Enhanced energy
metabolism during cold hypoxic organ preservation: studies on rat
liver after pyruvate supplementation. Cryobiology. 46:295–300.
2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Katz NR: Metabolic heterogeneity of
hepatocytes across the liver acinus. J Nutr. 122(Suppl): 843–849.
1992.PubMed/NCBI
|
16
|
Yu Q, Wang T, Zhou X, et al: Wld(S)
reduces paraquat-induced cytotoxicity via SIRT1 in non-neuronal
cells by attenuating the depletion of NAD. PLoS One. 6:e217702011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bantel H and Schulze-Osthoff K: Mechanisms
of cell death in acute liver failure. Front Physiol. 3:792012.
View Article : Google Scholar
|
18
|
Malhi H, Gores GJ and Lemasters JJ:
Apoptosis and necrosis in the liver: a tale of two deaths?
Hepatology. 43(Suppl 1): 31–44. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Brosnan JT, Krebs HA and Williamson DH:
Effects of ischaemia on metabolite concentrations in rat liver.
Biochem J. 117:91–96. 1970.PubMed/NCBI
|
20
|
Ying W: NAD+/NADH and NADP+/NADPH in
cellular functions and cell death: regulation and biological
consequences. Antioxid Redox Signal. 10:179–206. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dodson M, Darley-Usmar V and Zhang J:
Cellular metabolic and autophagic pathways: traffic control by
redox signaling. Free Radic Biol Med. 63:207–221. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ying W, Garnier P and Swanson RA: NAD+
repletion prevents PARP-1-induced glycolytic blockade and cell
death in cultured mouse astrocytes. Biochem Biophys Res Commun.
308:809–813. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hwang YC, Kaneko M, Bakr S, et al: Central
role for aldose reductase pathway in myocardial ischemic injury.
FASEB J. 18:1192–1199. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ramasamy R, Trueblood N and Schaefer S:
Metabolic effects of aldose reductase inhibition during low-flow
ischemia and reperfusion. Am J Physiol. 275:H195–H203.
1998.PubMed/NCBI
|
25
|
Benavente CA and Jacobson EL: Niacin
restriction upregulates NADPH oxidase and reactive oxygen species
(ROS) in human keratinocytes. Free Radic Biol Med. 44:527–537.
2008. View Article : Google Scholar
|
26
|
Dong W, Li F, Pan Z, et al: Resveratrol
ameliorates subacute intestinal ischemia-reperfusion injury. J Surg
Res. 185:182–189. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yan W, Fang Z, Yang Q, et al: SirT1
mediates hyperbaric oxygen preconditioning-induced ischemic
tolerance in rat brain. J Cereb Blood Flow Metab. 33:396–406. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lempiäinen J, Finckenberg P, Mervaala EE,
et al: Caloric restriction ameliorates kidney ischaemia/reperfusion
injury through PGC-1α-eNOS pathway and enhanced autophagy. Acta
Physiol (Oxf). 208:410–421. 2013.PubMed/NCBI
|
29
|
Pillai JB, Isbatan A, Imai S and Gupta MP:
Poly (ADP-ribose) polymerase-1-dependent cardiac myocyte cell death
during heart failure is mediated by NAD+ depletion and reduced
Sir2alpha deacetylase activity. J Biol Chem. 280:43121–43120. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Alano CC, Ying W and Swanson RA: Poly
(ADP-ribose) polymerase-1-mediated cell death in astrocytes
requires NAD+ depletion and mitochondrial permeability
transition. J Biol Chem. 279:18895–18902. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jang SY, Kang HT and Hwang ES:
Nicotinamide-induced mitophagy: event mediated by high
NAD+/NADH ratio and SIRT1 protein activation. J Biol
Chem. 287:19304–19314. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mouchiroud L, Houtkooper RH, Moullan N, et
al: The NAD+/sirtuin pathway modulates longevity through
activation of mitochondrial UPR and FOXO signaling. Cell.
154:430–441. 2013.
|
33
|
Siegel C and McCullough LD:
NAD+ depletion or PAR polymer formation: which plays the
role of executioner in ischaemic cell death? Acta Physiol (Oxf).
203:225–234. 2011.
|