1
|
Friedel HA and Brogden RN: Pinacidil. A
review of its pharmacodynamic and pharmacokinetic properties, and
therapeutic potential in the treatment of hypertension. Drugs.
39:929–967. 1990.PubMed/NCBI
|
2
|
Jahangir A and Terzic A: K(ATP) channel
therapeutics at the bedside. J Mol Cell Cardiol. 39:99–112. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen JY, Cheng KI, Tsai YL, Hong YR, Howng
SL, Kwan AL, Chen IJ and Wu BN: Potassium-channel openers KMUP-1
and pinacidil prevent subarachnoid hemorrhage-induced vasospasm by
restoring the BKCa-channel activity. Shock. 38:203–212. 2012.
View Article : Google Scholar
|
4
|
Xu J, Li T, Yang G and Liu L: Pinacidil
pretreatment improves vascular reactivity after shock through PKCα
and PKCɛ in rats. J Cardiovasc Pharmacol. 59:514–522.
2012.PubMed/NCBI
|
5
|
Barbaric I, Jones M, Buchner K, Baker D,
Andrews PW and Moore HD: Pinacidil enhances survival of
cryopreserved human embryonic stem cells. Cryobiology. 63:298–305.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hanley PJ and Daut J: K(ATP) channels and
preconditioning: a re-examination of the role of mitochondrial
K(ATP) channels and an overview of alternative mechanisms. J Mol
Cell Cardiol. 39:17–50. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang L and Yu T: Prolonged donor heart
preservation with pinacidil: the role of mitochondria and the
mitochondrial adenosine triphosphate-sensitive potassium channel. J
Thorac Cardiovasc Surg. 139:1057–1063. 2010. View Article : Google Scholar
|
8
|
Downey JM, Davis AM and Cohen MV:
Signaling pathways in ischemic preconditioning. Heart Fail Rev.
12:181–188. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
O’Rourke B, Ramza BM and Marban E:
Oscillations of membrane current and excitability driven by
metabolic oscillations in heart cells. Science. 265:962–966.
1994.
|
10
|
Hoppeler H, Vogt M, Weibel ER and Flück M:
Response of skeletal muscle mitochondria to hypoxia. Exp Physiol.
88:109–119. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Das M, Parker JE and Halestrap AP: Matrix
volume measurements challenge the existence of
diazoxide/glibencamide-sensitive KATP channels in rat mitochondria.
J Physiol. 547(Pt 3): 893–902. 2003.PubMed/NCBI
|
12
|
Beal MF: Mitochondria, free radicals, and
neurodegeneration. Curr Opin Neurobiol. 6:661–666. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Maggio D, Barabani M, Pierandrei M,
Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R and Cherubini
A: Marked decrease in plasma antioxidants in aged osteoporotic
women: results of a cross-sectional study. J Clin Endocrinol Metab.
88:1523–1527. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Brookes PS, Yoon Y, Robotham JL, Anders MW
and Sheu SS: Calcium, ATP, and ROS: a mitochondrial love-hate
triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pham NA, Robinson BH and Hedley DW:
Simultaneous detection of mitochondrial respiratory chain activity
and reactive oxygen in digitonin-permeabilized cells using flow
cytometry. Cytometry. 41:245–251. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Suh KS, Lee YS and Choi EM: Pinacidil
stimulates osteoblast function in osteoblastic MC3T3-E1 cells.
Immunopharm Immunotoxicol. 35:359–364. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Choi EM: Protective effect of diazoxide
against antimycin A-induced mitochondrial dysfunction in
osteoblastic MC3T3-E1 cells. Toxicol In Vitro. 25:1603–1608. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Choi EM, Suh KS and Lee YS: Liquiritigenin
restores osteoblast damage through regulating oxidative stress and
mitochondrial dysfunction. Phytother Res. 28:880–886. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Suh KS, Lee YS, Kim YS and Choi EM:
Sciadopitysin protects osteoblast function via its antioxidant
activity in MC3T3-E1 cells. Food Chem Toxicol. 58:220–227. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kennedy SG, Kandel ES, Cross TK and Hay N:
Akt/protein kinase B inhibits cell death by preventing the release
of cytochrome c from mitochondria. Mol Cell Biol. 19:5800–5810.
1999.PubMed/NCBI
|
21
|
Cammarota M, Paratcha G, Bevilaqua LR,
Levi de Stein M, Lopez M, Pellegrino de Iraldi A, Izquierdo I and
Medina JH: Cyclic AMP-responsive element binding protein in brain
mitochondria. J Neurochem. 72:2272–2277. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ryu H, Lee J, Impey S, Ratan RR and
Ferrante RJ: Antioxidants modulate mitochondrial PKA and increase
CREB binding to D-loop DNA of the mitochondrial genome in neurons.
Proc Natl Acad Sci USA. 102:13915–13920. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee J, Kim CH, Simon DK, Aminova LR,
Andreyev AY, Kushnareva YE, et al: Mitochondrial cyclic AMP
response element-binding protein (CREB) mediates mitochondrial gene
expression and neuronal survival. J Biol Chem. 280:40398–40401.
2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu
A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M and Ma
XL: Cardioprotective effects of thioredoxin in myocardial ischemia
and reperfusion: role of S-nitrosation. Proc Natl Acad Sci USA.
101:11471–11476. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yoshida T, Oka S, Masutani H, Nakamura H
and Yodoi J: The role of thioredoxin in the aging process:
involvement of oxidative stress. Antioxid Redox Signal. 5:563–570.
2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu Y and Min W: Thioredoxin promotes ASK1
ubiquitination and degradation to inhibit ASK1-mediated apoptosis
in a redox activity-independent manner. Circ Res. 90:1259–1266.
2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lemarechal H, Anract P, Beaudeux JL,
Bonnefont-Rousselot D, Ekindjian OG and Borderie D: Impairment of
thioredoxin reductase activity by oxidative stress in human
rheumatoid synoviocytes. Free Radic Res. 41:688–698. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Björnstedt M, Hamberg M, Kumar S, Xue J
and Holmgren A: Human thioredoxin reductase directly reduces lipid
hydroperoxides by NADPH and selenocystine strongly stimulates the
reaction via catalytically generated selenols. J Biol Chem.
270:11761–11764. 1995.
|
29
|
May JM, Mendiratta S, Hill KE and Burk RF:
Reduction of dehydroascorbate to ascorbate by the selenoenzyme
thioredoxin reductase. J Biol Chem. 272:22607–22610. 1997.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Das KC, Lewis-Molock Y and White CW:
Elevation of manganese superoxide dismutase gene expression by
thioredoxin. Am J Respir Cell Mol Biol. 17:713–726. 1997.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Jouihan HA, Cobine PA, Cooksey RC,
Hoagland EA, Boudina S, Abel ED, Winge DR and McClain DA:
Iron-mediated inhibition of mitochondrial manganese uptake mediates
mitochondrial dysfunction in a mouse model of hemochromatosis. Mol
Med. 14:98–108. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Echtay KS, Esteves TC, Pakay JL, Jekabsons
MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S,
Roebuck SJ and Brand MD: A signalling role for 4-hydroxy-2-nonenal
in regulation of mitochondrial uncoupling. EMBO J. 22:4103–4110.
2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Thorburn DR: Diverse powerhouses. Nature
Genet. 36:13–14. 2004. View Article : Google Scholar
|
34
|
Mourier A and Larsson NG: Tracing the
trail of protons through complex I of the mitochondrial respiratory
chain. PLoS Biol. 9:e10011292011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang DX and Gutterman DD: Mitochondrial
reactive oxygen species-mediated signaling in endothelial cells. Am
J Physiol Heart Circ Physiol. 292:H2023–H2031. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tsujimoto Y and Shimizu S: Role of the
mitochondrial membrane permeability transition in cell death.
Apoptosis. 12:835–840. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Weissig V: Mitochondrial-targeted drug and
DNA delivery. Crit Rev Ther Drug Carrier Syst. 20:1–62. 2003.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Hajnóczky G, Csordás G, Das S,
Garcia-Perez C, Saotome M, Sinha Roy S and Yi M: Mitochondrial
calcium signaling and cell death: approaches for assessing the role
of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium.
40:553–560. 2006.PubMed/NCBI
|
39
|
Tonin AM, Amaral AU, Busanello EN, Grings
M, Castilho RF and Wajner M: Long-chain 3-hydroxy fatty acids
accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and
mitochondrial trifunctional protein deficiencies uncouple oxidative
phosphorylation in heart mitochondria. J Bioenerg Biomemb.
45:47–57. 2013. View Article : Google Scholar
|