1
|
Brodie MJ, Schachter SC and Kwan P: Fast
Facts: Epilepsy. 5th edition. Health Press Limited; Oxford, UK:
2012
|
2
|
Banerjee PN and Hauser WA: Incidence and
prevalence. Epilepsy: A Comprehensive Textbook. Engel J and Pedley
TA: Lippincott Williams & Wilkins; Philadelphia, PA: pp. 45–56.
2008
|
3
|
Sisodiya S: Etiology and management of
refractory epilepsies. Nat Clin Pract Neurol. 3:320–330. 2007.
View Article : Google Scholar
|
4
|
Engelborghs S, D’Hooge R and De Deyn PP:
Pathophysiology of epilepsy. Acta Neurol Belg. 100:201–213.
2000.
|
5
|
Pitkänen A and Lukasiuk K: Molecular and
cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy
Behav. 14(Suppl 1): 16–25. 2009.PubMed/NCBI
|
6
|
Pitkänen A and Lukasiuk K: Mechanisms of
epileptogenesis and potential treatment targets. Lancet Neurol.
10:173–186. 2011.PubMed/NCBI
|
7
|
Löscher W, Klitgaard H, Twyman RE and
Schmidt D: New avenues for anti-epileptic drug discovery and
development. Nat Rev Drug Discov. 12:757–776. 2013.PubMed/NCBI
|
8
|
Sørensen AT and Kokaia M: Novel approaches
to epilepsy treatment. Epilepsia. 54:1–10. 2013.
|
9
|
Binder JR: Use of fMRI language
lateralization for quantitative prediction of naming and verbal
memory outcome in left temporal lobe epilepsy surgery. fMRI: Basics
and Clinical Aplications. Ulmer S and Jansen O: Springer; New York,
NY: pp. 77–93. 2010, View Article : Google Scholar
|
10
|
Carthew RW and Sontheimer EJ: Origins and
mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Croce CM and Calin GA: miRNAs, cancer, and
stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ebert MS and Sharp PA: Roles for microRNAs
in conferring robustness to biological processes. Cell.
149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sempere LF, Freemantle S, Pitha-Rowe I,
Moss E, Dmitrovsky E and Ambros V: Expression profiling of
mammalian microRNAs uncovers a subset of brain-expressed microRNAs
with possible roles in murine and human neuronal differentiation.
Genome Biol. 5:R132004. View Article : Google Scholar
|
14
|
Wang W, Kwon EJ and Tsai LH: MicroRNAs in
learning, memory, and neurological diseases. Learn Mem. 19:359–368.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Saugstad JA: MicroRNAs as effectors of
brain function with roles in ischemia and injury, neuroprotection,
and neurodegeneration. J Cereb Blood Flow Metab. 30:1564–1576.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jimenez-Mateos EM and Henshall DC:
Epilepsy and microRNA. Neuroscience. 238:218–229. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mckiernan RC, Jimenez-Mateos EM, Bray I,
et al: Reduced mature microRNA levels in association with dicer
loss in human temporal lobe epilepsy with hippocampal sclerosis.
PLoS One. 7:e359212012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bot AM, Dębski KJ and Lukasiuk K:
Alterations in miRNA levels in the dentate gyrus in epileptic rats.
PloS One. 8:e760512013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Irizarry RA, Hobbs B, Collin F, et al:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar
|
20
|
Diboun I, Wernisch L, Orengo CA and
Koltzenburg M: Microarray analysis after RNA amplification can
detect pronounced differences in gene expression using limma. BMC
Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gillespie CS, Lei G, Boys RJ, Greenall A
and Wilkinson DJ: Analysing time course microarray data using
Bioconductor: a case study using yeast2 Affymetrix arrays. BMC Res
Notes. 3:812010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tai Y: Timecourse: Statistical Analysis
for Developmental Microarray Time Course Data. R package version 1.
2007
|
23
|
Kumar L and E Futschik M: Mfuzz: a
software package for soft clustering of microarray data.
Bioinformation. 2:5–7. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
de Hoon MJ, Imoto S, Nolan J and Miyano S:
Open source clustering software. Bioinformatics. 20:1453–1454.
2004.PubMed/NCBI
|
25
|
Kozomara A and Griffiths-Jones S: miRBase:
integrating microRNA annotation and deep-sequencing data. Nucleic
Acids Res. 39(Database issue): D152–D157. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dweep H, Sticht C, Pandey P and Gretz N:
miRWalk - database: prediction of possible miRNA binding sites by
‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847.
2011.
|
27
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI
|
28
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009.PubMed/NCBI
|
29
|
Bader GD, Donaldson I, Wolting C,
Ouellette BF, Pawson T and Hogue CW: BIND - the Biomolecular
Interaction Network Database. Nucleic Acids Res. 29:242–245. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Martin A, Ochagavia ME, Rabasa LC, Miranda
J, Fernandez-de-Cossio J and Bringas R: BisoGenet: a new tool for
gene network building, visualization and analysis. BMC
bioinformatics. 11:912010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shannon P, Markiel A, Ozier O, et al:
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13:2498–2504. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Nepusz T, Yu H and Paccanaro A: Detecting
overlapping protein complexes in protein-protein interaction
networks. Nat Methods. 9:471–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
James CD: Aberrant miRNA expression in
brain tumors: a subject attracting an increasing amount of
attention. Neuro Oncol. 15:4052013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kong W, He L, Richards E, et al:
Upregulation of miRNA-155 promotes tumour angiogenesis by targeting
VHL and is associated with poor prognosis and triple-negative
breast cancer. Oncogene. 33:679–689. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Peng Y, Dai Y, Hitchcock C, et al: Insulin
growth factor signaling is regulated by microRNA-486, an
underexpressed microRNA in lung cancer. Proc Natl Acad Sci USA.
110:15043–15048. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bekris LM, Lutz F, Montine TJ, et al:
MicroRNA in Alzheimer’s disease: an exploratory study in brain,
cerebrospinal fluid and plasma. Biomarkers. 18:455–466. 2013.
|
37
|
Hu K, Xie YY, Zhang C, et al: MicroRNA
expression profile of the hippocampus in a rat model of temporal
lobe epilepsy and miR-34a-targeted neuroprotection against
hippocampal neurone cell apoptosis post-status epilepticus. BMC
Neurosci. 13:1152012. View Article : Google Scholar
|
38
|
Song YJ, Tian XB, Zhang S, et al: Temporal
lobe epilepsy induces differential expression of hippocampal miRNAs
including let-7e and miR-23a/b. Brain Res. 1387:134–140. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY:
miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Asangani IA, Rasheed SA, Nikolova DA, et
al: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor
suppressor Pdcd4 and stimulates invasion, intravasation and
metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2008.
View Article : Google Scholar
|
41
|
Yao Q, Xu H, Zhang QQ, Zhou H and Qu LH:
MicroRNA-21 promotes cell proliferation and down-regulates the
expression of programmed cell death 4 (PDCD4) in HeLa cervical
carcinoma cells. Biochem Biophys Res Commun. 388:539–542. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Su H, Yang JR, Xu T, et al: MicroRNA-101,
down-regulated in hepatocellular carcinoma, promotes apoptosis and
suppresses tumorigenicity. Cancer Res. 69:1135–1142. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Marquez RT, Wendlandt E, Galle CS, Keck K
and Mccaffrey AP: MicroRNA-21 is upregulated during the
proliferative phase of liver regeneration, targets Pellino-1 and
inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver
Physiol. 298:G535–G541. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li MM, Li XM, Zheng XP, Yu JT and Tan L:
MicroRNAs dysregulation in epilepsy. Brain Res. Oct 3–2013.(Epub
ahead of print).
|
45
|
Barkus C, McHugh SB, Sprengel R, Seeburg
PH, Rawlins JN and Bannerman DM: Hippocampal NMDA receptors and
anxiety: at the interface between cognition and emotion. Eur J
Pharmacol. 626:49–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lemke JR, Lal D, Reinthaler EM, et al:
Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic
spikes. Nat Genet. 45:1067–1072. 2013. View
Article : Google Scholar : PubMed/NCBI
|
47
|
Saadat M: N-methyl-D-aspartate receptor
NR1 subunit gene (GRIN1) G1001C polymorphism and susceptibility to
schizophrenia: a meta-analysis. EXCLI J. 9:11–16. 2010.
|
48
|
Wylie DC and Vanaman TC: Structure and
evolution of the calmodulin family of calcium regulatory proteins.
Calmodulin. Cohen P and Klee CB: Elsevier; New York, NY: pp. 1–15.
1988
|
49
|
Harduin-Lepers A, Vallejo-Ruiz V,
Krzewinski-Recchi MA, Samyn-Petit B, Julien S and Delannoy P: The
human sialyltransferase family. Biochimie. 83:727–737. 2001.
View Article : Google Scholar : PubMed/NCBI
|