1
|
Kanis JA and Reginster JY: European
guidance for the diagnosis and management of osteoporosis in
postmenopausal women - what is the current message for clinical
practice? Pol Arch Med Wewn. 118:538–540. 2008.PubMed/NCBI
|
2
|
Rachner TD1, Khosla S and Hofbauer LC:
Osteoporosis: now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ma B, Liu J, Zhang Q, Ying H, AJ, Sun J,
Wu D, Wang Y, Li J and Liu Y: Metabolomic profiles delineate
signature metabolic shifts during estrogen deficiency-induced bone
loss in rat by GC-TOF/MS. PLoS One. 8:e549652013. View Article : Google Scholar : PubMed/NCBI
|
4
|
de Lignieres B: Hormone replacement
therapy: clinical benefits and side-effects. Maturitas. 23:S31–S36.
1996.PubMed/NCBI
|
5
|
Fournier A, Berrino F, Riboli E, Avenel V
and Clavel-Chapelon F: Breast cancer risk in relation to different
types of hormone replacement therapy in the E3N-EPIC cohort. Int J
Cancer. 114:448–454. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Beral V; Million Women Study
Collaborators. Bull D, Green J and Reeves G: Ovarian cancer and
hormone replacement therapy in the Million Women Study. Lancet.
369:1703–1710. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Furness S, Roberts H, Marjoribanks J and
Lethaby A: Hormone therapy in postmenopausal women and risk of
endometrial hyperplasia. Cochrane Database Syst Rev.
8:CD0004022012.
|
8
|
Li GF, Pan YZ, Sirois P, Li K and Xu YJ:
Iron homeostasis in osteoporosis and its clinical implications.
Osteoporos Int. 23:2403–2408. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Weinberg ED: Iron loading: a risk factor
for osteoporosis. Biometals. 19:633–635. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Valenti L, Varenna M, Fracanzani AL, Rossi
V, Fargion S and Sinigaglia L: Association between iron overload
and osteoporosis in patients with hereditary hemochromatosis.
Osteoporos Int. 20:549–555. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Weinberg ED: Role of iron in osteoporosis.
Pediatr Endocrinol Rev. 6:81–85. 2008.
|
12
|
Roussou P, Tsagarakis NJ, Kountouras D,
Livadas S and Diamanti-Kandarakis E: Beta-thalassemia major and
female fertility: the role of iron and iron-induced oxidative
stress. Anemia. 2013:6172042013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun L, Guo W, Yin C, Zhang S, Qu G, Hou Y,
Rong H, Ji H and Liu S: Hepcidin deficiency undermines bone
load-bearing capacity through inducing iron overload. Gene.
543:161–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun CC, Vaja V, Babitt JL and Lin HY:
Targeting the hepcidin-ferroportin axis to develop new treatment
strategies for anemia of chronic disease and anemia of
inflammation. Am J Hematol. 87:392–400. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mascitelli L and Goldstein MR: Hereditary
hemochromatosis, iron, hepcidin, and coronary heart disease. Med
Hypotheses. 82:402–403. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zucker S: The swinging pendulum of the
anemia of cancer: erythropoietin trumps hepcidin. J Clin Oncol.
29:e422011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Canavesi E, Alfieri C, Pelusi S and
Valenti L: Hepcidin and HFE protein: Iron metabolism as a target
for the anemia of chronic kidney disease. World J Nephrol.
1:166–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu Y, Li G, Du B, Zhang P, Xiao L, Sirois
P and Li K: Hepcidin increases intracellular Ca2+ of osteoblast
hFOB1.19 through L-type Ca2+ channels. Regul Pept.
172:58–61. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ku HK, Lim HM, Oh KH, Yang HJ, Jeong JS
and Kim SK: Interpretation of protein quantitation using the
Bradford assay: comparison with two calculation models. Anal
Biochem. 434:178–180. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang P, Xu YJ, Zhao DY, Ma Y, Xiao L,
Feng YS, Du BC, Qian ZM and Li K: Increased intracellular iron and
mineralization of cultured hFOB 1.19 cells following hepcidin
activation through ferroportin-1. Saudi Med J. 31:1303–1308.
2010.PubMed/NCBI
|
21
|
Lee KW, Yook JY, Son MY, Kim MJ, Koo DB,
Han YM and Cho YS: Rapamycin promotes the osteoblastic
differentiation of human embryonic stem cells by blocking the mTOR
pathway and stimulating the BMP/Smad pathway. Stem Cells Dev.
19:557–568. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim do Y, Kim GW and Chung SH: Nectandrin
A Enhances the BMP-Induced Osteoblastic Differentiation and
Mineralization by Activation of p38 MAPK-Smad Signaling Pathway.
Korean J Physiol Pharmacol. 17:447–453. 2013.PubMed/NCBI
|
23
|
Kim do Y, Jung MS, Park YG, Yuan HD, Quan
HY and Chung SH: Ginsenoside Rh2(S) induces the differentiation and
mineralization of osteoblastic MC3T3-E1 cells through activation of
PKD and p38 MAPK pathways. BMB Rep. 44:659–664. 2011.
|
24
|
Chamberlain G, Fox J, Ashton B and
Middleton J: Concise review: mesenchymal stem cells: their
phenotype, differentiation capacity, immunological features, and
potential for homing. Stem Cells. 25:2739–2749. 2007. View Article : Google Scholar
|
25
|
Frazer DM, Wilkins SJ, Becker EM, Vulpe
CD, McKie AT, Trinder D and Anderson GJ: Hepcidin expression
inversely correlates with the expression of duodenal iron
transporters and iron absorption in rats. Gastroenterology.
123:835–844. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sasaki Y, Shimonaka Y, Ikuta K, Hosoki T,
Sasaki K, Torimoto Y, Kanada H, Moriguchi Y and Kohgo Y: Hepcidin
production in response to iron is controlled by monocyte-derived
humoral factors. Int J Hematol. 99:12–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dai J, Li Y, Zhou H, Chen J, Chen M and
Xiao Z: Genistein promotion of osteogenic differentiation through
BMP/SMAD5/RUNX2 signaling. Int J Biol Sci. 9:1089–1098. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liao QC, Xiao ZS, Qin YF and Zhou HH:
Genistein stimulates osteoblastic differentiation via p38
MAPK-Cbfal pathway in bone marrow culture. Acta Pharmacol Sin.
28:1597–1602. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li GF, Xu YJ, He YF, Du BC, Zhang P, Zhao
DY, Yu C, Qin CH and Li K: Effect of hepcidin on intracellular
calcium in human osteoblasts. Mol Cell Biochem. 366:169–174. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen Z, Wu C, Gu W, Klein T, Crawford R
and Xiao Y: Osteogenic differentiation of bone marrow MSCs by
β-tricalcium phosphate stimulating macrophages via BMP2 signalling
pathway. Biomaterials. 35:1507–1518. 2014.
|
31
|
Lin L, Valore EV, Nemeth E, Goodnough JB,
Gabayan V and Ganz T: Iron transferrin regulates hepcidin synthesis
in primary hepatocyte culture through hemojuvelin and BMP2/4.
Blood. 110:2182–2189. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Babitt JL, Huang FW, Wrighting DM, Xia Y,
Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ,
Andrews NC and Lin HY: Bone morphogenetic protein signaling by
hemojuvelin regulates hepcidin expression. Nat Genet. 38:531–539.
2006. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Y, Zheng WK, Gao WS, Shen Y and Ding
WY: Function of TGF-beta and p38 MAKP signaling pathway in
osteoblast differentiation from rat adipose-derived stem cells. Eur
Rev Med Pharmacol Sci. 17:1611–1619. 2013.PubMed/NCBI
|