1
|
Malm G and Engman ML: Congenital
cytomegalovirus infections. Semin Fetal Neonatal Med. 12:154–159.
2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fishman JA and Rubin RH: Infection in
organ-transplant recipients. New Engl J Med. 338:1741–1751. 1998.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Alford CA, Stagno S, Pass RF and Britt WJ:
Congenital and perinatal cytomegalovirus infections. Rev Infect
Dis. 12:745–753. 1990. View Article : Google Scholar
|
4
|
Dolan A, Cunningham C, Hector RD, et al:
Genetic content of wild-type human cytomegalovirus. J Gen Virol.
85:1301–1312. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Murphy E, Yu D, Grimwood J, et al: Coding
potential of laboratory and clinical strains of human
cytomegalovirus. Proc Natl Acad Sci USA. 100:14976–14981. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Chee MS, Bankier AT, Beck S, et al:
Analysis of the protein-coding content of the sequence of human
cytomegalovirus strain AD169. Curr Top Microbiol Immunol.
154:125–169. 1990.PubMed/NCBI
|
7
|
Davison AJ, Dolan A, Akter P, et al: The
human cytomegalovirus genome revisited: comparison with the
chimpanzee cytomegalovirus genome. J Gen Virol. 84:17–28. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Cha TA, Tom E, Kemble GW, Duke GM,
Mocarski ES and Spaete RR: Human cytomegalovirus clinical isolates
carry at least 19 genes not found in laboratory strains. J Virol.
70:78–83. 1996.PubMed/NCBI
|
9
|
Varnum SM, Streblow DN, Monroe ME, et al:
Identification of proteins in human cytomegalovirus (HCMV)
particles: the HCMV proteome. J Virol. 78:10960–10966. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Grainger L, Cicchini L, Rak M, Petrucelli
A, Fitzgerald KD, Semler BL and Goodrum F: Stress-inducible
alternative translation initiation of human cytomegalovirus latency
protein pUL138. J Virol. 84:9472–9486. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Umashankar M, Petrucelli A, Cicchini L, et
al: A novel human cytomegalovirus locus modulates cell
type-specific outcomes of infection. PLoS Pathog. 7:e10024442011.
View Article : Google Scholar
|
12
|
Wang YP, Qi Y, Huang YJ, et al:
Identification of immediate early gene X-1 as a cellular target
gene of hcmv-mir-UL148D. Int J Mol Med. 31:959–966. 2013.PubMed/NCBI
|
13
|
Wills MR, Ashiru O, Reeves MB, et al:
Human cytomegalovirus encodes an MHC class I-like molecule (UL142)
that functions to inhibit NK cell lysis. J Immunol. 175:7457–7465.
2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pei Y, Fu W, Yang E, et al: A Hsp40
chaperone protein interacts with and modulates the cellular
distribution of the primase protein of human cytomegalovirus. PLoS
Pathog. 8:e10029682012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Paulus C, Krauss S and Nevels M: A human
cytomegalovirus antagonist of type I IFN-dependent signal
transducer and activator of transcription signaling. Proc Natl Acad
Sci USA. 103:3840–3845. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cristea IM, Moorman NJ, Terhune SS, et al:
Human cytomegalovirus pUL83 stimulates activity of the viral
immediate-early promoter through its interaction with the cellular
IFI16 protein. J Virol. 84:7803–7814. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bauer S, Groh V, Wu J, Steinle A, Phillips
JH, Lanier LL and Spies T: Activation of NK cells and T cells by
NKG2D, a receptor for stress-inducible MICA. Science. 285:727–729.
1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu J, Song Y, Bakker AB, Bauer S, Spies T,
Lanier LL and Phillips JH: An activating immunoreceptor complex
formed by NKG2D and DAP10. Science. 285:730–732. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chalupny NJ, Rein-Weston A, Dosch S and
Cosman D: Down-regulation of the NKG2D ligand MICA by the human
cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun.
346:175–181. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zou Y, Bresnahan W, Taylor RT and Stastny
P: Effect of human cytomegalovirus on expression of MHC class
I-related chains A. J Immunol. 174:3098–3104. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Beck S and Barrell BG: Human
cytomegalovirus encodes a glycoprotein homologous to MHC class I
antigens. Nature. 331:269–272. 1988. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Novotny J, Rigoutsos I, Coleman D and
Shenk T: In silico structural and functional analysis of the human
cytomegalovirus (HHV5) Genome. J Mol Biol. 310:1151–1166. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bao Y, Lopez JA, James DE and Hunziker W:
Snapin interacts with the Exo70 subunit of the exocyst and
modulates GLUT4 trafficking. J Biol Chem. 283:324–331. 2008.
View Article : Google Scholar
|
24
|
Buxton P, Zhang XM, Walsh B, Sriratana A,
Schenberg I, Manickam E and Rowe T: Identification and
characterization of Snapin as a ubiquitously expressed
SNARE-binding protein that interacts with SNAP23 in non-neuronal
cells. Biochem J. 375:433–440. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Luo J, Chen J, Yang E, et al: Modulation
of the cellular distribution of human cytomegalovirus helicase by
cellular factor snapin. J Virol. 87:10628–10640. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Barnard EC, Brown G and Stow ND: Deletion
mutants of the herpes simplex virus type 1 UL8 protein: effect on
DNA synthesis and ability to interact with and influence the
intracellular localization of the UL5 and UL52 proteins. Virology.
237:97–106. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Söllner TH: Regulated exocytosis and SNARE
function. Mol Membr Biol. 20:209–220. 2003. View Article : Google Scholar
|
28
|
Weber T, Zemelman BV, McNew JA, et al:
SNAREpins: minimal machinery for membrane fusion. Cell. 92:759–772.
1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Penfold ME and Mocarski ES: Formation of
cytomegalovirus DNA replication compartments defined by
localization of viral proteins and DNA synthesis. Virology.
239:46–61. 1997. View Article : Google Scholar
|
30
|
Zhou B, Zhu YB, Lin L, Cai Q and Sheng ZH:
Snapin deficiency is associated with developmental defects of the
central nervous system. Biosci Rep. 31:151–158. 2011. View Article : Google Scholar
|
31
|
Wu CA, Nelson NJ, McGeoch DJ and Challberg
MD: Identification of herpes simplex virus type 1 genes required
for origin-dependent DNA synthesis. J Virol. 62:435–443.
1988.PubMed/NCBI
|
32
|
Suzuki F, Morishima S, Tanaka T and
Muramatsu I: Snapin, a new regulator of receptor signaling,
augments alpha1A-adrenocept-or-operatedcalcium influx through
TRPC6. J Biol Chem. 282:29563–29573. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Snyder DA, Kelly ML and Woodbury DJ: SNARE
complex regulation by phosphorylation. Cell Biochem Biophys.
45:111–123. 2006. View Article : Google Scholar : PubMed/NCBI
|