1
|
Friedenstein AJ, Petrakova KV, Kurolesova
AI and Frolova GP: Heterotopic of bone marrow. Analysis of
precursor cells for osteogenic and hematopoietic tissues.
Transplantation. 6:230–247. 1968. View Article : Google Scholar : PubMed/NCBI
|
2
|
Friedenstein AJ, Chailakhyan RK and
Gerasimov UV: Bone marrow osteogenic stem cells: in vitro
cultivation and transplantation in diffusion chambers. Cell Tissue
Kinet. 20:263–272. 1987.PubMed/NCBI
|
3
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Keating A: Mesenchymal stromal cells. Curr
Opin Hematol. 13:419–425. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Arthur A, Zannettino A and Gronthos S: The
therapeutic applications of multipotential mesenchymal/stromal stem
cells in skeletal tissue repair. J Cell Physiol. 218:237–245. 2009.
View Article : Google Scholar
|
6
|
Young RG, Butler DL, Weber W, Caplan AI,
Gordon SL and Fink DJ: Use of mesenchymal stem cells in a collagen
matrix for Achilles tendon repair. J Orthop Res. 16:406–413. 1998.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Wakitani S, Saito T and Caplan AI:
Myogenic cells derived from rat bone marrow mesenchymal stem cells
exposed to 5-azacytidine. Muscle Nerve. 18:1417–1426. 1995.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Dennis JE and Caplan AI: Differentiation
potential of conditionally immortalized mesenchymal progenitor
cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. J Cell
Physiol. 167:523–538. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rubinstein P, Rosenfield RE, Adamson JW
and Stevens CE: Stored placental blood for unrelated bone marrow
reconstitution. Blood. 81:1679–1690. 1993.PubMed/NCBI
|
10
|
Gullo F and De Bari C: Prospective
purification of a subpopulation of human synovial mesenchymal stem
cells with enhanced chondro-osteogenic potency. Rheumatology
(Oxford). 52:1758–1768. 2013. View Article : Google Scholar
|
11
|
Joshi M, B Patil P, He Z, Holgersson J,
Olausson M and Sumitran-Holgersson S: Fetal liver-derived
mesenchymal stromal cells augment engraftment of transplanted
hepatocytes. Cytotherapy. 14:657–669. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
in ‘t Anker PS1, Noort WA, Scherjon SA, et
al: Mesenchymal stem cells in human second-trimester bone marrow,
liver, lung, and spleen exhibit a similar immunophenotype but a
heterogeneous multilineage differentiation potential.
Haematologica. 88:845–852. 2003.
|
13
|
O’Donoghue K and Chan J: Human fetal
mesenchymal stem cells. Curr Stem Cell Res Ther. 1:371–386. 2006.
View Article : Google Scholar
|
14
|
Jo CH, Yoon PW, Kim H, Kang KS and Yoon
KS: Comparative evaluation of in vivo osteogenic differentiation of
fetal and adult mesenchymal stem cell in rat critical-sized femoral
defect model. Cell Tissue Res. 353:41–52. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dheda K, Huggett JF, Bustin SA, Johnson
MA, Rook G and Zumla A: Validation of housekeeping genes for
normalizing RNA expression in real-time PCR. Biotechniques.
37:112–114. 116118–119. 2004.PubMed/NCBI
|
16
|
Radonić A, Thulke S, Mackay IM, Landt O,
Siegert W and Nitsche A: Guideline to reference gene selection for
quantitative real-time PCR. Biochem Biophys Res Commun.
313:856–862. 2004. View Article : Google Scholar
|
17
|
Bustin SA: Absolute quantification of mRNA
using real-time reverse transcription polymerase chain reaction
assays. J Mol Endocrinol. 25:169–193. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Suzuki T, Higgins PJ and Crawford DR:
Control selection for RNA quantitation. Biotechniques. 29:332–337.
2000.PubMed/NCBI
|
19
|
Cordoba EM, Die JV, González-Verdejo CI,
Nadal S and Román B: Selection of reference genes in Hedysarum
coronarium under various stresses and stages of development. Anal
Biochem. 409:236–243. 2011. View Article : Google Scholar
|
20
|
Schmittgen TD and Zakrajsek BA: Effect of
experimental treatment on housekeeping gene expression: validation
by real-time, quantitative RT-PCR. J Biochem Biophys Methods.
46:69–81. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vandesompele J, De Preter K, Pattyn F,
Poppe B, Van Roy N, De Paepe A and Speleman F: Accurate
normalization of real-time quantitative RT-PCR data by geometric
averaging of multiple internal control genes. Genome Biol.
3:RESEARCH00342002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Andersen CL, Jensen JL and Ørntoft TF:
Normalization of real-time quantitative reverse transcription-PCR
data: a model-based variance estimation approach to identify genes
suited for normalization, applied to bladder and colon cancer data
sets. Cancer Res. 64:5245–5250. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pfaffl MW, Tichopad A, Prgomet C and
Neuvians TP: Determination of stable housekeeping genes,
differentially regulated target genes and sample integrity:
BestKeeper - Excel-based tool using pair-wise correlations.
Biotechnol Lett. 26:509–515. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Riekstina U, Cakstina I, Parfejevs V,
Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R and Ancans J:
Embryonic stem cell marker expression pattern in human mesenchymal
stem cells derived from bone marrow, adipose tissue, heart and
dermis. Stem Cell Rev. 5:378–386. 2009. View Article : Google Scholar
|
25
|
Gang EJ, Bosnakovski D, Figueiredo CA,
Visser JW and Perlingeiro RC: SSEA-4 identifies mesenchymal stem
cells from bone marrow. Blood. 109:1743–1751. 2007. View Article : Google Scholar
|
26
|
Martinez C, Hofmann TJ, Marino R, Dominici
M and Horwitz EM: Human bone marrow mesenchymal stromal cells
express the neural ganglioside GD2: a novel surface marker for the
identification of MSCs. Blood. 109:4245–4248. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pozzobon M, Piccoli M, Ditadi A, Bollini
S, Destro R, André-Schmutz I, Masiero L, Lenzini E, Zanesco L,
Petrelli L, et al: Mesenchymal stromal cells can be derived from
bone marrow CD133+ cells: implications for therapy. Stem Cells Dev.
18:497–510. 2009. View Article : Google Scholar
|
28
|
Drost AC, Weng S, Feil G, Schäfer J,
Baumann S, Kanz L, Sievert KD, Stenzl A and Möhle R: In vitro
myogenic differentiation of human bone marrow-derived mesenchymal
stem cells as a potential treatment for urethral sphincter muscle
repair. Ann NY Acad Sci. 1176:135–143. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang KC, Trzaska KA, Smirnov SV, Kotenko
SV, Schwander SK, Ellner JJ and Rameshwar P: Down-regulation of MHC
II in mesenchymal stem cells at high IFN-gamma can be partly
explained by cytoplasmic retention of CIITA. J Immunol.
180:1826–1833. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Greco SJ, Zhou C, Ye JH and Rameshwar P: A
method to generate human mesenchymal stem cell-derived neurons
which express and are excited by multiple neurotransmitters. Biol
Proced Online. 10:90–101. 2008.PubMed/NCBI
|
31
|
Trzaska KA, Reddy BY, Munoz JL, Li KY, Ye
JH and Rameshwar P: Loss of RE-1 silencing factor in mesenchymal
stem cell-derived dopamine progenitors induces functional maturity.
Mol Cell Neurosci. 39:285–290. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Trzaska KA, Kuzhikandathil EV and
Rameshwar P: Specification of a dopaminergic phenotype from adult
human mesenchymal stem cells. Stem Cells. 25:2797–2808. 2007.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Muguruma Y, Reyes M, Nakamura Y, Sato T,
Matsuzawa H, Miyatake H, Akatsuka A, Itoh J, Yahata T, Ando K, et
al: In vivo and in vitro differentiation of myocytes from human
bone marrow-derived multipotent progenitor cells. Exp Hematol.
31:1323–1330. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Greco SJ, Zhou C, Ye JH and Rameshwar P:
An interdisciplinary approach and characterization of neuronal
cells transdifferentiated from human mesenchymal stem cells. Stem
Cells Dev. 16:811–826. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gresner SM, Golanska E, Kulczycka-Wojdala
D, Jaskolski DJ, Papierz W and Liberski PP: Selection of reference
genes for gene expression studies in astrocytomas. Anal Biochem.
408:163–165. 2011. View Article : Google Scholar
|
36
|
Zampieri M, Ciccarone F, Guastafierro T,
Bacalini MG, Calabrese R, Moreno-Villanueva M, Reale A, Chevanne M,
Bürkle A and Caiafa P: Validation of suitable internal control
genes for expression studies in aging. Mech Ageing Dev. 131:89–95.
2010. View Article : Google Scholar
|
37
|
Raicevic G, Najar M, Stamatopoulos B, De
Bruyn C, Meuleman N, Bron D, Toungouz M and Lagneaux L: The source
of human mesenchymal stromal cells influences their TLR profile as
well as their functional properties. Cell Immunol. 270:207–216.
2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jung KH, Yi T, Son MK, Song SU and Hong
SS: Therapeutic effect of human clonal bone marrow-derived
mesenchymal stem cells in severe acute pancreatitis. Arch Pharm
Res. August 21–2014.(Epub ahead of print).
|
39
|
Deng Y, Zhou H, Gu P and Fan X: Repair of
canine medial orbital bone defects with miR-31-modified bone marrow
mesenchymal stem cells. Invest Ophthalmol Vis Sci. 55:6016–6023.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei L, Lei GH, Yi HW and Sheng PY: Bone
formation in rabbit’s leg muscle after autologous transplantation
of bone marrow-derived mesenchymal stem cells expressing human bone
morphogenic protein-2. Indian J Orthop. 48:347–353. 2014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Jones GN, Moschidou D, Abdulrazzak H, et
al: Potential of human fetal chorionic stem cells for the treatment
of osteogenesis imperfecta. Stem Cells Dev. 23:262–276. 2014.
View Article : Google Scholar
|
42
|
Najar M, Raicevic G, Boufker HI, Fayyad
Kazan H, De Bruyn C, Meuleman N, Bron D, Toungouz M and Lagneaux L:
Mesenchymal stromal cells use PGE2 to modulate activation and
proliferation of lymphocyte subsets: Combined comparison of adipose
tissue, Wharton’s Jelly and bone marrow sources. Cell Immunol.
264:171–179. 2010. View Article : Google Scholar
|
43
|
Raicevic G, Rouas R, Najar M, Stordeur P,
Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT and
Lagneaux L: Inflammation modifies the pattern and the function of
Toll-like receptors expressed by human mesenchymal stromal cells.
Hum Immunol. 71:235–244. 2010. View Article : Google Scholar
|
44
|
Yañez R, Oviedo A, Aldea M, Bueren JA and
Lamana ML: Prostaglandin E2 plays a key role in the
immunosuppressive properties of adipose and bone marrow
tissue-derived mesenchymal stromal cells. Exp Cell Res.
316:3109–3123. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen MY, Lie PC, Li ZL and Wei X:
Endothelial differentiation of Wharton’s jelly-derived mesenchymal
stem cells in comparison with bone marrow-derived mesenchymal stem
cells. Exp Hematol. 37:629–640. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS,
Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, et al: Comparison of
immunomodulatory properties of mesenchymal stem cells derived from
adult human tissues. Cell Immunol. 259:150–156. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Noël D, Caton D, Roche S, Bony C, Lehmann
S, Casteilla L, Jorgensen C and Cousin B: Cell specific differences
between human adipose-derived and mesenchymal-stromal cells despite
similar differentiation potentials. Exp Cell Res. 314:1575–1584.
2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Uccelli A, Moretta L and Pistoia V:
Mesenchymal stem cells in health and disease. Nat Rev Immunol.
8:726–736. 2008. View Article : Google Scholar
|
49
|
Pozzobon M, Ghionzoli M and De Coppi P:
ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric
Surgery: current research and perspective. Pediatr Surg Int.
26:3–10. 2010. View Article : Google Scholar
|