1
|
Parmeggiani F: Clinics, epidemiology and
genetics of retinitis pigmentosa. Curr Genomics. 12:236–237. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hu DN: Prevalence and mode of inheritance
of major genetic eye diseases in China. J Med Genet. 24:584–588.
1987. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hartong DT, Berson EL and Dryja TP:
Retinitis pigmentosa. Lancet. 368:1795–1809. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li L, Xiao X, Li S, et al: Detection of
variants in 15 genes in 87 unrelated Chinese patients with Leber
congenital amaurosis. PLoS One. 6:e194582011. View Article : Google Scholar : PubMed/NCBI
|
5
|
den Hollander AI, Heckenlively JR, van den
Born LI, et al: Leber congenital amaurosis and retinitis pigmentosa
with Coats-like exudative vasculopathy are associated with
mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet.
69:198–203. 2001. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Zernant J, Külm M, Dharmaraj S, et al:
Genotyping microarray (disease chip) for Leber congenital
amaurosis: detection of modifier alleles. Invest Ophthalmol Vis
Sci. 46:3052–3059. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Reese MG, Eeckman FH, Kulp D and Haussler
D: Improved splice site detection in Genie. J Comput Biol.
4:311–323. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Morimura H, Fishman GA, Grover SA, et al:
Mutations in the RPE65 gene in patients with autosomal recessive
retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad
Sci USA. 95:3088–3093. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rivolta C, Sharon D, DeAngelis MM and
Dryja TP: Retinitis pigmentosa and allied diseases: numerous
diseases, genes, and inheritance patterns. Hum Mol Genet.
11:1219–1227. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Booij JC, Florijn RJ, ten Brink JB, et al:
Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and
RPGRIP1 genes in patients with juvenile retinitis pigmentosa. J Med
Genet. 42:e672005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sohocki MM, Bowne SJ, Sullivan LS, et al:
Mutations in a new photoreceptor-pineal gene on 17p cause Leber
congenital amaurosis. Nat Genet. 24:79–83. 2000. View Article : Google Scholar
|
12
|
Aldahmesh MA, Al-Owain M, Alqahtani F,
Hazzaa S and Alkuraya FS: A null mutation in CABP4 causes Leber’s
congenital amaurosis-like phenotype. Mol Vis. 16:207–212.
2010.PubMed/NCBI
|
13
|
den Hollander AI, Koenekoop RK, Yzer S, et
al: Mutations in the CEP290 (NPHP6) gene are a frequent cause of
Leber congenital amaurosis. Am J Hum Genet. 79:556–561. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Abu-Safieh L, Alrashed M, Anazi S, et al:
Autozygome-guided exome sequencing in retinal dystrophy patients
reveals pathogenetic mutations and novel candidate disease genes.
Genome Res. 23:236–247. 2013. View Article : Google Scholar :
|
15
|
Perrault I, Rozet JM, Calvas P, et al:
Retinal-specific guanylate cyclase gene mutations in Leber’s
congenital amaurosis. Nat Genet. 14:461–464. 1996. View Article : Google Scholar : PubMed/NCBI
|
16
|
Estrada-Cuzcano A, Koenekoop RK,
Coppieters F, et al: IQCB1 mutations in patients with leber
congenital amaurosis. Invest Ophthalmol Vis Sci. 52:834–839. 2011.
View Article : Google Scholar
|
17
|
Sergouniotis PI, Davidson AE, Mackay DS,
et al: Recessive mutations in KCNJ13, encoding an inwardly
rectifying potassium channel subunit, cause leber congenital
amaurosis. Am J Hum Genet. 89:183–190. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
den Hollander AI, Koenekoop RK, Mohamed
MD, et al: Mutations in LCA5, encoding the ciliary protein
lebercilin, cause Leber congenital amaurosis. Nat Genet.
39:889–895. 2007. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Koenekoop RK, Wang H, Majewski J, et al:
Mutations in NMNAT1 cause Leber congenital amaurosis and identify a
new disease pathway for retinal degeneration. Nat Genet.
44:1035–1039. 2012. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Henderson RH, Williamson KA, Kennedy JS,
et al: A rare de novo nonsense mutation in OTX2 causes early onset
retinal dystrophy and pituitary dysfunction. Mol Vis. 15:2442–2447.
2009.PubMed/NCBI
|
21
|
Friedman JS, Chang B, Kannabiran C, et al:
Premature truncation of a novel protein, RD3, exhibiting subnuclear
localization is associated with retinal degeneration. Am J Hum
Genet. 79:1059–1070. 2006. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Dryja TP, Adams SM, Grimsby JL, et al:
Null RPGRIP1 alleles in patients with Leber congenital amaurosis.
Am J Hum Genet. 68:1295–1298. 2001. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Ji Y, Wang J, Xiao X, Li S, Guo X and
Zhang Q: Mutations in RPGR and RP2 of Chinese patients with
X-linked retinitis pigmentosa. Curr Eye Res. 35:73–79. 2010.
View Article : Google Scholar
|
24
|
Wang Q, Wang P, Li S, et al: Mitochondrial
DNA haplogroup distribution in Chaoshanese with and without myopia.
Mol Vis. 16:303–309. 2010.PubMed/NCBI
|
25
|
Chen Y, Zhang Q, Shen T, et al:
Comprehensive mutation analysis by whole-exome sequencing in 41
Chinese families with Leber congenital amaurosis. Invest Ophthalmol
Vis Sci. 54:4351–4357. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li Y, Vinckenbosch N, Tian G, et al:
Resequencing of 200 human exomes identifies an excess of
low-frequency non-synonymous coding variants. Nat Genet.
42:969–972. 2010. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Xu Y, Guan L, Shen T, et al: Mutations of
60 known causative genes in 157 families with retinitis pigmentosa
based on exome sequencing. Hum Genet. 133:1255–1271. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Flanagan SE, Patch AM and Ellard S: Using
SIFT and PolyPhen to predict loss-of-function and gain-of-function
mutations. Genet Test Mol Biomarkers. 14:533–537. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ramensky V, Bork P and Sunyaev S: Human
non-synonymous SNPs: server and survey. Nucleic Acids Res.
30:3894–3900. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kumar P, Henikoff S and Ng PC: Predicting
the effects of coding non-synonymous variants on protein function
using the SIFT algorithm. Nat Protoc. 4:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang J, Liu J and Zhang Q: FOXL2 mutations
in Chinese patients with blepharophimosis-ptosis-epicanthus
inversus syndrome. Mol Vis. 13:108–113. 2007.PubMed/NCBI
|
32
|
Neveling K, Collin RW, Gilissen C, et al:
Next-generation genetic testing for retinitis pigmentosa. Hum
Mutat. 33:963–972. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Beryozkin A, Zelinger L, Bandah-Rozenfeld
D, et al: Mutations in CRB1 are a relatively common cause of
autosomal recessive early-onset retinal degeneration in the Israeli
and Palestinian populations. Invest Ophthalmol Vis Sci.
54:2068–2075. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bujakowska K, Audo I, Mohand-Saïd S, et
al: CRB1 mutations in inherited retinal dystrophies. Hum Mutat.
33:306–315. 2012. View Article : Google Scholar :
|
35
|
Corton M, Tatu SD, Avila-Fernandez A, et
al: High frequency of CRB1 mutations as cause of Early-Onset
Retinal Dystrophies in the Spanish population. Orphanet J Rare Dis.
8:202013. View Article : Google Scholar : PubMed/NCBI
|