1
|
Ku JH: The management of neurogenic
bladder and quality of life in spinal cord injury. BJU Int.
98:739–745. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Papadopoulos SM, Selden NR, Quint DJ,
Patel N, Gillespie B and Grube S: Immediate spinal cord
decompression for cervical spinal cord injury: feasibility and
outcome. J Trauma. 52:323–332. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Harrop JS, Sharan AD, Vaccaro AR and
Przybylski GJ: The cause of neurologic deterioration after acute
cervical spinal cord injury. Spine (Phila Pa 1976). 26:340–346.
2001. View Article : Google Scholar
|
4
|
Beck KD, Nguyen HX, Galvan MD, Salazar DL,
Woodruff TM and Anderson AJ: Quantitative analysis of cellular
inflammation after traumatic spinal cord injury: evidence for a
multiphasic inflammatory response in the acute to chronic
environment. Brain. 133:433–447. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Furuya T, Hashimoto M, Koda M, Okawa A,
Murata A, Takahashi K, Yamashita T and Yamazaki M: Treatment of rat
spinal cord injury with a Rho-kinase inhibitor and bone marrow
stromal cell transplantation. Brain Res. 1295:192–202. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa
M, Kataoka K, Chou H, Ishikawa N, Matsumoto N, Iwashita Y, Mizuta
E, Kuno S and Ide C: Bone marrow stromal cells infused into the
cerebrospinal fluid promote functional recovery of the injured rat
spinal cord with reduced cavity formation. Exp Neurol. 187:266–278.
2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gu Y, Wang J, Ding F, Hu N, Wang Y and Gu
X: Neurotrophic actions of bone marrow stromal cells on primary
culture of dorsal root ganglion tissues and neurons. J Mol
Neurosci. 40:332–341. 2010. View Article : Google Scholar
|
8
|
Nguyen HP, Zaroff JG, Bayman EO, et al:
Perioperative hypothermia (33 degrees C) does not increase the
occurrence of cardiovascular events in patients undergoing cerebral
aneurysm surgery: findings from the Intraoperative Hypothermia for
Aneurysm Surgery Trial. Anesthesiology. 113:327–342. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kobbe P, Lichte P, Wellmann M, Hildebrand
F, Nast-Kolb D, Waydhas C and Oberbeck R: Impact of hypothermia on
the severely injured patient. Unfallchirurg. 112:1055–1061.
2009.(In German). View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang T, Solano J, He D, Loutfi M,
Dietrich WD and Kuluz JW: Traumatic injury activates MAP kinases in
astrocytes: mechanisms of hypothermia and hyperthermia. J
Neurotrauma. 26:1535–1545. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dimar II Jr, Shields CB, Zhang YP, Burke
DA, Raque GH and Glassman SD: The role of directly applied
hypothermia in spinal cord injury. Spine (Phila Pa 1976).
25:2294–2302. 2000. View Article : Google Scholar
|
12
|
Kwon BK, Mann C, Sohn HM, Hilibrand AS,
Phillips FM, Wang JC and Fehlings MG: NASS Section on Biologics:
Hypothermia for spinal cord injury. Spine J. 8:859–874. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dietrich WD, Atkins CM and Bramlett HM:
Protection in animal models of brain and spinal cord injury with
mild to moderate hypothermia. J Neurotrauma. 26:301–312. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao QL, Howard RM, Dennison JB and
Whittemore SR: Differentiation of engrafted neuronal-restricted
precursor cells is inhibited in the traumatically injured spinal
cord. Exp Neurol. 177:349–359. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Carvalho KA, Vialle EN, Moreira GH, Cunha
RC, Simeoni RB, Francisco JC, Guarita-Souza LC, Oliveira L, Zocche
L and Olandoski M: Functional outcome of bone marrow stem cells
(CD45(+)/CD34(−)) after cell therapy in chronic spinal cord injury
in Wistar rats. Transplant Proc. 40:845–846. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun Z, Wen Y, Mao Q, Hu L, Li H, Sun Z and
Wang D: Adenosine-triphosphate promoting repair of spinal cord
injury by activating mammalian target of rapamycin/signal
transducers and activators of transcription 3 signal pathway in
rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 24:165–171.
2010.(In Chinese). PubMed/NCBI
|
17
|
Bhang SH, Lee YE, Cho SW, Shim JW, Lee SH,
Choi CY, Chang JW and Kim BS: Basic fibroblast growth factor
promotes bone marrow stromal cell transplantation-mediated neural
regeneration in traumatic brain injury. Biochem Biophys Res Commun.
359:40–45. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Theus MH, Wei L, Cui L, Francis K, Hu X,
Keogh C and Yu SP: In vitro hypoxic preconditioning of embryonic
stem cells as a strategy of promoting cell survival and functional
benefits after transplantation into the ischemic rat brain. Exp
Neurol. 210:656–670. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hwang DH, Shin HY, Kwon MJ, Choi JY, Ryu
BY and Kim BG: Survival of neural stem cell grafts in the lesioned
spinal cord is enhanced by a combination of treadmill locomotor
training via insulin-like growth factor-1 signaling. J Neurosci.
34:12788–12800. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shen LH, Li Y, Gao Q, Savant-Bhonsale S
and Chopp M: Down-regulation of neurocan expression in reactive
astrocytes promotes axonal regeneration and facilitates the
neurorestorative effects of bone marrow stromal cells in the
ischemic rat brain. Glia. 56:1747–1754. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Giordano A, Galderisi U and Marino IR:
From the laboratory bench to the patient’s bedside: an update on
clinical trials with mesenchymal stem cells. J Cell Physiol.
211:27–35. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Le Blanc K and Pittenger M: Mesenchymal
stem cells: progress toward promise. Cytotherapy. 7:36–45. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Beggs KJ, Lyubimov A, Borneman JN,
Bartholomew A, Moseley A, Dodds R, Archambault MP, Smith AK and
McIntosh KR: Immunologic consequences of multiple, high-dose
administration of allogeneic mesenchymal stem cells to baboons.
Cell Transplant. 15:711–721. 2006. View Article : Google Scholar
|
24
|
Jori FP, Napolitano MA, Melone MA,
Cipollaro M, Cascino A, Altucci L, Peluso G, Giordano A and
Galderisi U: Molecular pathways involved in neural in vitro
differentiation of marrow stromal stem cells. J Cell Biochem.
94:645–655. 2005. View Article : Google Scholar
|
25
|
Mazzini L, Mareschi K, Ferrero I, Vassallo
E, Oliveri G, Nasuelli N, Oggioni GD, Testa L and Fagioli F: Stem
cell treatment in Amyotrophic Lateral Sclerosis. J Neurol Sci.
265:78–83. 2008. View Article : Google Scholar
|
26
|
Bae JS, Han HS, Youn DH, Carter JE, Modo
M, Schuchman EH and Jin HK: Bone marrow-derived mesenchymal stem
cells promote neuronal networks with functional synaptic
transmission after transplantation into mice with
neurodegeneration. Stem Cells. 25:1307–1316. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen G, Hu YR, Wan H, Xia L, Li JH, Yang
F, Qu X, Wang SG and Wang ZC: Functional recovery following
traumatic spinal cord injury mediated by a unique polymer scaffold
seeded with neural stem cells and Schwann cells. Chin Med J (Engl).
123:2424–2431. 2010.
|
28
|
Li XH, Chen Z, Xia Zhao, Liang HQ, Zhao
ML, Zhang S and Tu Y: Hypothermia in rats after traumatic brain
injury within the endogenous neural stem cell proliferation and
differentiation and its mechanism. Zhonghua Chuang Shang Za Zhi.
30:500–503. 2014.
|
29
|
Lyden PD, Krieger D, Yenari M and Dietrich
WD: Therapeutic hypothermia for acute stroke. Int J Stroke. 1:9–19.
2006. View Article : Google Scholar
|
30
|
Deng H, Han HS, Cheng D, Sun GH and Yenari
MA: Mild hypothermia inhibits inflammation after experimental
stroke and brain inflammation. Stroke. 34:2495–2501. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Schwab S, Georgiadis D, Berrouschot J,
Schellinger PD, Graffagnino C and Mayer SA: Feasibility and safety
of moderate hypothermia after massive hemispheric infarction.
Stroke. 32:2033–2035. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tohyama Y, Sako K and Yonemasu Y:
Hypothermia attenuates hyperglycolysis in the periphery of ischemic
core in rat brain. Exp Brain Res. 122:333–338. 1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kaibara T, Sutherland GR, Colbourne F and
Tyson RL: Hypothermia: depression of tricarboxylic acid cycle flux
and evidence for pentose phosphate shunt upregulation. J Neurosurg.
90:339–347. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lo EH and Steinberg GK: Effects of
hypothermia on evoked potentials, magnetic resonance imaging, and
blood flow in focal ischemia in rabbits. Stroke. 23:889–893. 1992.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Sutton LN, Clark BJ, Norwood CR, Woodford
EJ and Welsh FA: Global cerebral ischemia in piglets under
conditions of mild and deep hypothermia. Stroke. 22:1567–1573.
1991. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jiang JY, Liang YM, Luo QZ and Zhu C:
Effect of mild hypothermia on brain dialysate lactate after fluid
percussion brain injury in rodents. Neurosurgery. 54:713–718. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Rosomoff HL and Holaday DA: Cerebral blood
flow and cerebral oxygen consumption during hypothermia. Am J
Physiol. 179:85–88. 1954.PubMed/NCBI
|
38
|
Kuluz JW, Prado R, Chang J, Ginsberg MD,
Schleien CL and Busto R: Selective brain cooling increases cortical
cerebral blood flow in rats. Am J Physiol. 265:H824–H827.
1993.PubMed/NCBI
|
39
|
Hansebout RR, Lamont RN and Kamath MV: The
effects of local cooling on canine spinal cord blood flow. Can J
Neurol Sci. 12:83–87. 1985.PubMed/NCBI
|
40
|
Baker AJ, Zornow MH, Grafe MR, Scheller
MS, Skilling SR, Smullin DH and Larson AA: Hypothermia prevents
ischemia-induced increases in hippocampal glycine concentrations in
rabbits. Stroke. 22:666–673. 1991. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rokkas CK, Cronin CS, Nitta T, Helfrich LR
Jr, Lobner DC, Choi DW and Kouchoukos NT: Profound systemic
hypothermia inhibits the release of neurotransmitter amino acids in
spinal cord ischemia. J Thorac Cardiovasc Surg. 110:27–35. 1995.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Zausinger S, Westermaier T, Plesnila N,
Steiger HJ and Schmid-Elsaesser R: Neuroprotection in transient
focal cerebral ischemia by combination drug therapy and mild
hypothermia: comparison with customary therapeutic regimen. Stroke.
34:1526–1532. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhu H, Meloni BP, Bojarski C, Knuckey MW
and Knuckey NW: Post-ischemic modest hypothermia (35 degrees C)
combined with intravenous magnesium is more effective at reducing
CA1 neuronal death than either treatment used alone following
global cerebral ischemia in rats. Exp Neurol. 193:361–368. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Dietrich WD, Busto R, Halley M and Valdes
I: The importance of brain temperature in alterations of the blood
brain barrier following cerebral ischemia. J Neuropathol Exp
Neurol. 49:486–497. 1990. View Article : Google Scholar : PubMed/NCBI
|
45
|
Huang ZG, Xue D, Preston E, Karbalai H and
Buchan AM: Biphasic opening of the blood-brain barrier following
transient focal ischemia: effects of hypothermia. Can J Neurol Sci.
26:298–304. 1999. View Article : Google Scholar : PubMed/NCBI
|
46
|
Arican N, Kaya M, Yorulmaz C, Kalayci R,
Ince H, Kucuk M, Fincanci SK and Elmas I: Effect of hypothermia on
blood-brain barrier permeability following traumatic brain injury
in chronically ethanol-treated rats. Int J Neurosci. 116:1249–1261.
2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Nagel S, Su Y, Horstmann S, Heiland S,
Gardner H, Koziol J, Martinez-Torres FJ and Wagner S: Minocycline
and hypothermia for reperfusion injury after focal cerebral
ischemia in the rat: effects on BBB breakdown and MMP expression in
the acute and subacute phase. Brain Res. 1188:198–206. 2008.
View Article : Google Scholar
|
48
|
Hu BR, Kamme F and Wieloch T: Alterations
of Ca2+/calmodulin-dependent protein kinase II and its
messenger RNA in the rat hippocampus following normo- and
hypothermic ischemia. Neuroscience. 68:1003–1016. 1995. View Article : Google Scholar : PubMed/NCBI
|
49
|
Churn SB, Taft WC, Billingsley MS, Blair
RE and DeLorenzo RJ: Temperature modulation of ischemic neuronal
death and inhibition of calcium/calmodulin-dependent protein kinase
II in gerbils. Stroke. 21:1715–1721. 1990. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shimohata T, Zhao H and Steinberg GK:
Epsilon PKC may contribute to the protective effect of hypothermia
in a rat focal cerebral ischemia model. Stroke. 38:375–380. 2007.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Atkins CM, Oliva AA Jr, Alonso OF, Chen S,
Bramlett HM, Hu BR and Dietrich WD: Hypothermia treatment
potentiates ERK1/2 activation after traumatic brain injury. Eur J
Neurosci. 26:810–819. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shimohata T, Zhao H, Sung JH, Sun G,
Mochly-Rosen D and Steinberg GK: Suppression of deltaPKC activation
after focal cerebral ischemia contributes to the protective effect
of hypothermia. J Cereb Blood Flow Metab. 27:1463–1475. 2007.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ha KY and Kim YH: Neuroprotective effect
of moderate epidural hypothermia after spinal cord injury in rats.
Spine (Phila Pa 1976). 33:2059–2065. 2008. View Article : Google Scholar
|
54
|
Morino T, Ogata T, Takeba J and Yamamoto
H: Microglia inhibition is a target of mild hypothermic treatment
after the spinal cord injury. Spinal Cord. 46:425–431. 2008.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Fukui O, Kinugasa Y, Fukuda A, Fukuda H,
Tskitishvili E, Hayashi S, Song M, Kanagawa T, Hosono T, Shimoya K
and Murata Y: Post-ischemic hypothermia reduced IL-18 expression
and suppressed microglial activation in the immature brain. Brain
Res. 1121:35–45. 2006. View Article : Google Scholar : PubMed/NCBI
|
56
|
Brodhun M, Fritz H, Walter B,
Antonow-Schlorke I, Reinhart K, Zwiener U, Bauer R and Patt S:
Immunomorphological sequelae of severe brain injury induced by
fluid-percussion in juvenile pigs - effects of mild hypothermia.
Acta Neuropathol. 101:424–434. 2001.PubMed/NCBI
|
57
|
Zhao H, Yenari MA, Sapolsky RM and
Steinberg GK: Mild postischemic hypothermia prolongs the time
window for gene therapy by inhibiting cytochrome C release. Stroke.
35:572–577. 2004. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhao H, Yenari MA, Cheng D, Sapolsky RM
and Steinberg GK: Biphasic cytochrome c release after transient
global ischemia and its inhibition by hypothermia. J Cereb Blood
Flow Metab. 25:1119–1129. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Zhao H, Wang JQ, Shimohata T, Sun G,
Yenari MA, Sapolsky RM and Steinberg GK: Conditions of protection
by hypothermia and effects on apoptotic pathways in a rat model of
permanent middle cerebral artery occlusion. J Neurosurg.
107:636–641. 2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Shibuya S, Miyamoto O, Janjua NA, Itano T,
Mori S and Norimatsu H: Post-traumatic moderate systemic
hypothermia reduces TUNEL positive cells following spinal cord
injury in rat. Spinal Cord. 42:29–34. 2004. View Article : Google Scholar : PubMed/NCBI
|
61
|
Ohta H, Terao Y, Shintani Y and Kiyota Y:
Therapeutic time window of post-ischemic mild hypothermia and the
gene expression associated with the neuroprotection in rat focal
cerebral ischemia. Neurosci Res. 57:424–433. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gressens P, Dingley J, Plaisant F, Porter
H, Schwendimann L, Verney C, Tooley J and Thoresen M: Analysis of
neuronal, glial, endothelial, axonal and apoptotic markers
following moderate therapeutic hypothermia and anesthesia in the
developing piglet brain. Brain Pathol. 18:10–20. 2008. View Article : Google Scholar
|
63
|
Kobayashi MS, Asai S, Ishikawa K, Nishida
Y, Nagata T and Takahashi Y: Global profiling of influence of
intra-ischemic brain temperature on gene expression in rat brain.
Brain Res Rev. 58:171–191. 2008. View Article : Google Scholar : PubMed/NCBI
|