1
|
Lindert U, Cramer M, Meuli M, Georgiev O
and Schaffner W: Metal-responsive transcription factor 1 (MTF-1)
activity is regulated by a nonconventional nuclear localization
signal and a metal-responsive transactivation domain. Mol Cell
Biol. 29:6283–6293. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kambe T, Weaver BP and Andrews GK: The
genetics of essential metal homeostasis during development.
Genesis. 46:214–228. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Davis SR and Cousins RJ: Metallothionein
expression in animals: a physiological perspective on function. J
Nutr. 130:1085–1088. 2000.PubMed/NCBI
|
4
|
Coyle P, Philcox JC, Carey LC and Rofe AM:
Metallothionein: the multipurpose protein. Cell Mol Life Sci.
59:627–647. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen P, Munoz A, Nettesheim D, Shaw CF III
and Petering DH: Stoichiometry and cluster specificity of copper
binding to metallothionein: homogeneous metal clusters. Biochem J.
317(Pt 2): 395–402. 1996.PubMed/NCBI
|
6
|
Orlowski C and Piotrowski JK: Metal
composition of human hepatic and renal metallothionein. Biol Trace
Elem Res. 65:133–141. 1998. View Article : Google Scholar
|
7
|
Andrews GK: Regulation of metallothionein
gene expression by oxidative stress and metal ions. Biochem
Pharmacol. 59:95–104. 2000. View Article : Google Scholar
|
8
|
Laity JH and Andrews GK: Understanding the
mechanisms of zinc-sensing by metal-response element binding
transcription factor-1 (MTF-1). Arch Biochem Biophys. 463:201–210.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Günther V, Lindert U and Schaffner W: The
taste of heavy metals: gene regulation by MTF-1. Biochim Biophys
Acta. 1823:1416–1425. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang B, Georgiev O, Hagmann M, et al:
Activity of metal-responsive transcription factor 1 by toxic heavy
metals and H2O2 in vitro is modulated by
metallothionein. Mol Cell Biol. 23:8471–8485. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Günther V, Davis AM, Georgiev O and
Schaffner W: A conserved cysteine cluster, essential for
transcriptional activity, mediates homodimerization of human
metal-responsive transcription factor-1 (MTF-1). Biochim Biophys
Acta. 1823:476–483. 2012. View Article : Google Scholar
|
12
|
Radtke F, Heuchel R, Georgiev O, et al:
Cloned transcription factor MTF-1 activates the mouse
metallothionein I promoter. EMBO J. 12:1355–1362. 1993.PubMed/NCBI
|
13
|
Wimmer U, Wang Y, Georgiev O and Schaffner
W: Two major branches of anti-cadmium defense in the mouse:
MTF-1/metallothioneins and glutathione. Nucleic Acids Res.
33:5715–5727. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo L, Lichten LA, Ryu MS, Liuzzi JP, Wang
F and Cousins RJ: STAT5-glucocorticoid receptor interaction and
MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic
acinar cells. Proc Natl Acad Sci USA. 107:2818–2823. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yepiskoposyan H, Egli D, Fergestad T, et
al: Transcriptome response to heavy metal stress in Drosophila
reveals a new zinc transporter that confers resistance to zinc.
Nucleic Acids Res. 34:4866–4877. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu Y, Wu A, Zhang Z, et al:
Characterization of the GufA subfamily member SLC39A11/Zip11 as a
zinc transporter. J Nutr Biochem. 24:1697–1708. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bellingham SA, Coleman LA, Masters CL,
Camakaris J and Hill AF: Regulation of prion gene expression by
transcription factors SP1 and metal transcription factor-1. J Biol
Chem. 284:1291–1301. 2009. View Article : Google Scholar
|
18
|
Burke R, Commons E and Camakaris J:
Expression and localisation of the essential copper transporter
DmATP7 in Drosophila neuronal and intestinal tissues. Int J Biochem
Cell Biol. 40:1850–1860. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Selvaraj A, Balamurugan K, Yepiskoposyan
H, et al: Metal-responsive transcription factor (MTF-1) handles
both extremes, copper load and copper starvation, by activating
different genes. Genes Dev. 19:891–896. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Troadec MB, Ward DM, Lo E, Kaplan J and De
Domenico I: Induction of FPN1 transcription by MTF-1 reveals a role
for ferroportin in transition metal efflux. Blood. 116:4657–4664.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lichtlen P, Wang Y, Belser T, et al:
Target gene search for the metal-responsive transcription factor
MTF-1. Nucleic Acids Res. 29:1514–1523. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Langmade SJ, Ravindra R, Daniels PJ and
Andrews GK: The transcription factor MTF-1 mediates metal
regulation of the mouse ZnT1 gene. J Biol Chem. 275:34803–34809.
2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kaler P and Prasad R: Molecular cloning
and functional characterization of novel zinc transporter rZip10
(Slc39a10) involved in zinc uptake across rat renal brush-border
membrane. Am J Physiol Renal Physiol. 292:F217–F229. 2007.
View Article : Google Scholar
|
24
|
Wang Y, Lorenzi I, Georgiev O and
Schaffner W: Metal-responsive transcription factor-1 (MTF-1)
selects different types of metal response elements at low vs. high
zinc concentration. Biol Chem. 385:623–632. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Devergnas S, Chimienti F, Naud N, et al:
Differential regulation of zinc efflux transporters ZnT-1, ZnT-5
and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study.
Biochem Pharmacol. 68:699–709. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sims HI, Chirn GW and Marr MT II: Single
nucleotide in the MTF-1 binding site can determine metal-specific
transcription activation. Proc Natl Acad Sci USA. 109:16516–16521.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Günther V, Waldvogel D, Nosswitz M,
Georgiev O and Schaffner W: Dissection of Drosophila MTF-1 reveals
a domain for differential target gene activation upon copper
overload vs. copper starvation. Int J Biochem Cell Biol.
44:404–411. 2012. View Article : Google Scholar
|
28
|
Marr SK, Pennington KL and Marr MT:
Efficient metal-specific transcription activation by Drosophila
MTF-1 requires conserved cysteine residues in the carboxy-terminal
domain. Biochim Biophys Acta. 1819:902–912. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Meijsing SH, Pufall MA, So AY, Bates DL,
Chen L and Yamamoto KR: DNA binding site sequence directs
glucocorticoid receptor structure and activity. Science.
324:407–410. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Heuchel R, Radtke F, Georgiev O, Stark G,
Aguet M and Schaffner W: The transcription factor MTF-1 is
essential for basal and heavy metal-induced metallothionein gene
expression. EMBO J. 13:2870–2875. 1994.PubMed/NCBI
|
31
|
Guerrerio AL and Berg JM: Metal ion
affinities of the zinc finger domains of the metal responsive
element-binding transcription factor-1 (MTF1). Biochemistry.
43:5437–5444. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Potter BM, Feng LS, Parasuram P, et al:
The six zinc fingers of metal-responsive element binding
transcription factor-1 form stable and quasi-ordered structures
with relatively small differences in zinc affinities. J Biol Chem.
280:28529–28540. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen X, Chu M and Giedroc DP: MRE-Binding
transcription factor-1: weak zinc-binding finger domains 5 and 6
modulate the structure, affinity, and specificity of the
metal-response element complex. Biochemistry. 38:12915–12925. 1999.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang Q, Xu J, Zhu Y, Chai B, Liang A and
Wang W: Lanthanum(III) impacts on metallothionein MTT1 and MTT2
from Tetrahymena thermophila. Biol Trace Elem Res. 143:1808–1818.
2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Q, Xu J, Chai B, Liang A and Wang W:
Functional comparison of metallothioneins MTT1 and MTT2 from
Tetrahymena thermophila. Arch Biochem Biophys. 509:170–176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang Q, Xu J, Chai B, Liang A and Wang W:
Expression of Metallothionein MTT1 and MTT2 from Tetrahymena
thermophila exposed to SO2, NaCl and Tris-HCl. Asian J
Chem. 24:705–708. 2012.
|
37
|
Zhang P, Xu J, Lu J, Liang A and Wang W:
Different response of two metallothionein subfamilies exposed to
chromium (vi) in Tetrahymena thermophila. Fresen Environ Bull.
22:1924–1928. 2013.
|
38
|
Stefanidou M, Maravelias C, Dona A and
Spiliopoulou C: Zinc: a multipurpose trace element. Arch Toxicol.
80:1–9. 2006. View Article : Google Scholar
|
39
|
Maret W and Li Y: Coordination dynamics of
zinc in proteins. Chem Rev. 109:4682–4707. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wright RO and Baccarelli A: Metals and
neurotoxicology. J Nutr. 137:2809–2813. 2007.PubMed/NCBI
|
41
|
Kukic I, Lee JK, Coblentz J, Kelleher SL
and Kiselyov K: Zinc-dependent lysosomal enlargement in
TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4
(Slc30a4) transporter. Biochem J. 451:155–163. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kimura T, Okumura F, Oguro I, et al: Metal
response element-binding transcription factor-1 is activated by
degradation of metallothionein. J Health Sci. 55:72–76. 2009.
View Article : Google Scholar
|
43
|
Summers KL, Sutherland DE and Stillman MJ:
Single-domain metallothioneins: evidence of the onset of clustered
metal binding domains in Zn-rhMT 1a. Biochemistry. 52:2461–2471.
2013. View Article : Google Scholar : PubMed/NCBI
|