1
|
Andrade-Valença LP, Valença MM, Velasco
TR, Carlotti CG Jr, Assirati JA, Galvis-Alonso OY, Neder L, Cendes
F and Leite JP: Mesial temporal lobe epilepsy: clinical and
neuropathologic findings of familial and sporadic forms. Epilepsia.
6:1046–1054. 2008. View Article : Google Scholar
|
2
|
Lamont SR, Stanwell BJ, Hill R, Reid IC
and Stewart CA: Ketamine pre-treatment dissociates the effects of
electroconvulsive stimulation on mossy fiber sprouting and cellular
proliferation in the dentate gyrus. Brain Res. 1053:27–32. 2008.
View Article : Google Scholar
|
3
|
Kuo LW, Lee CY, Chen JH, Wedeen VJ, Chen
CC, Liou HH and Tseng WY: Mossy fiber sprouting in
pilocarpine-induced status epilepticus rat hippocampus: a
correlative study of diffusion spectrum imaging and histology.
Neuroimage. 41:789–800. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Koyama R and Ikegaya Y: Mossy fiber
sprouting as a potential therapeutic target for epilepsy. Curr
Neurovasc Res. 1:3–10. 2004. View Article : Google Scholar
|
5
|
Lin H, Huang Y, Wang Y and Jia J:
Spatiotemporal profile of N-cadherin expression in the mossy fiber
sprouting and synaptic plasticity following seizures. Mol Cell
Biochem. 358:201–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fang M, Liu GW, Pan YM, Shen L, Li CS, Xi
ZQ, Xiao F, Wang L, Chen D and Wang XF: Abnormal expression and
spatiotemporal change of Slit2 in neurons and astrocytes in
temporal lobe epileptic foci: a study of epileptic patients and
experimental animals. Brain Res. 1324:14–23. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pan Y, Liu G, Fang M, Shen L, Wang L, Han
Y, Shen D and Wang X: Abnormal expression of netrin-G2 in temporal
lobe epilepsy neurons in humans and a rat model. Exp Neurol.
224:340–346. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Monnier PP, Sierra A, Macchi P,
Deitinghoff L, Andersen JS, Mann M, Flad M, Hornberger MR, Stahl B,
Bonhoeffer F and Mueller BK: RGM is a repulsive guidance molecule
for retinal axons. Nature. 419:392–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Oldekamp J, Krämer N, Alvarez-Bolado G and
Skutella T: Expression pattern of the repulsive guidance molecules
RGM A, B and C during mouse development. Gene Expr Patterns.
4:283–288. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hata K, Fujitani M, Yasuda Y, Doya H,
Saito T, Yamagishi S, Mueller BK and Yamashita T: RGMa inhibition
promotes axonal growth and recovery after spinal cord injury. J
Cell Biol. 173:47–58. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang T, Wu X, Yin C, Klebe D, Zhang JH and
Qin X: CRMP-2 is involved in axon growth inhibition induced by RGMa
in vitro and in vivo. Mol Neurobiol. 47:903–913. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fivaz M, Bandara S, Inoue T and Meyer T:
Robust neuronal symmetry breaking by Ras-triggered local positive
feedback. Curr Biol. 18:44–50. 2008. View Article : Google Scholar
|
13
|
Hall A and Lalli G: Rho and Ras GTPases in
axon growth, guidance, and branching. Cold Spring Harb Perspect
Biol. 2:a0018182010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Endo M and Yamashita T: Inactivation of
Ras by p120GAP via focal adhesion kinase dephosphorylation mediates
RGMa-induced growth cone collapse. J Neurosci. 29:6649–6662. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Giachello CN, Premoselli F, Montarolo PG
and Ghirardi M: Pentylenetetrazol-induced epileptiform activity
affects basal synaptic transmission and short-term plasticity in
monosynaptic connections. PLoS One. 8:e569682013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ruethrich H, Grecksch G, Becker A and Krug
M: Potentiation effects in the dentate gyrus of
pentylenetetrazol-kindled rats. Physiol Behav. 60:455–462. 1996.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Racine RJ: Modification of seizure
activity by electrical stimulation. II. Motor seizure.
Electroencephalogr Clin Neurophysiol. 32:281–294. 1974. View Article : Google Scholar
|
18
|
National Institues of Health. Guide for
the care and use of laboratory animals. The National Academies
Press; Washington, DC: pp. 1–127. 1996
|
19
|
Holmes GL, Sarkisian M, Ben-Ari Y and
Chevassus-Au-Louis N: Mossy fiber sprouting after recurrent
seizures during early development in rats. J Comp Neurol.
404:537–553. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cavazos JE and Cross DJ: The role of
synaptic reorganization in mesial temporal lobe epilepsy. Epilepsy
Behav. 8:483–493. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zeng LH, Rensing NR and Wong M: The
mammalian target of rapamycin signaling pathway mediates
epileptogenesis in a model of temporal lobe epilepsy. J Neurosci.
29:6964–6972. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Colciaghi, Finardi A, Nobili P, Locatelli
D, Spigolon G and Battaglia GS: Progressive brain damage, synaptic
reorganization and NMDA activation in a model of epileptogenic
cortical dysplasia. PLoS One. 9:e898982014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lew FH and Buckmaster PS: Is there a
critical period for mossy fiber sprouting in a mouse model of
temporal lobe epilepsy. Epilepsia. 52:2326–2332. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nissinen J, Lukasiuk K and Pitkanen A: Is
mossy fiber sprouting present at the time of the first spontaneous
seizures in rat experimental temporal lobe epilepsy? Hippocampus.
11:299–310. 2001. View Article : Google Scholar
|
25
|
Yoshida J, Kubo T and Yamashita T:
Inhibition of branching and spine maturation by repulsive guidance
molecule in cultured cortical neurons. Biochem Biophys Res Commun.
372:725–729. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schwab JM, Conrad S, Monnier PP, et al:
Spinal cord injury-induced lesional expression of the repulsive
guidance molecule (RGM). Eur J Neurosci. 21:1569–1576. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Schwab JM, Conrad S, Monnier PP, Julien S,
Mueller BK and Schluesener HJ: Central nervous system
injury-induced repulsive guidance molecule expression in the adult
human brain. Arch Neurol. 62:1561–1568. 2005.PubMed/NCBI
|
28
|
Feng J, Wang T, Li Q, Wu X and Qin X: RNA
interference against repulsive guidance molecule A improves axon
sprout and neural function recovery of rats after MCAO/reperfusion.
Exp Neurol. 238:235–242. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Capelli LP, Krepischi AC, Gurgel-Giannetti
J, Mendes MF, Rodrigues T, Varela MC, Koiffmann CP and Rosenberg C:
Deletion of the RMGA and CHD2 genes in a child with epilepsy and
mental deficiency. Eur J Med Genet. 55:132–134. 2012. View Article : Google Scholar
|
30
|
Brinks H, Conrad S, Vogt J, Oldekamp J,
Sierra A, Deitinghoff L, Bechmann I, Alvarez-Bolado G, Heimrich B,
Monnier PP, Mueller BK and Skutella T: The repulsive guidance
molecule RGMa is involved in the formation of afferent connections
in the dentate gyrus. J Neurosci. 24:3862–3869. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kubo T, Endo M, Hata K, Taniguchi J,
Kitajo K, Tomura S, Yamaguchi A, Mueller BK and Yamashita T: Myosin
IIA is required for neurite outgrowth inhibition produced by
repulsive guidance molecule. J Neurochem. 15:113–126. 2008.
View Article : Google Scholar
|
32
|
Conrad S, Genth H, Hofmann F, Just I and
Skutella T: Neogenin-RGMa signaling at the growth cone is bone
morphogenetic protein-independent and involves RhoA, ROCK, and PKC.
J Biol Chem. 282:16423–16433. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang J, Wang YH, Hou YY, Xi T, Liu Y and
Liu JG: The small GTPase RhoA, but not Rac1, is essential for
conditioned aversive memory formation through regulation of actin
rearrangements in rat dorsal hippocampus. Acta Pharmacol Sin.
34:811–818. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Begum R, Nur-E-Kamal MS and Zaman MA: The
role of Rho GTPases in the regulation of the rearrangement of actin
cytoskeleton and cell movement. Exp Mol Med. 36:358–366. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yuan J, Wang LY, Li JM, Cao NJ, Wang L,
Feng GB, Xue T, Lu Y and Wang XF: Altered expression of the small
guanosine triphosphatase RhoA in human temporal lobe epilepsy. J
Mol Neurosci. 42:53–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Burrows JF, Kelvin AA, McFarlane C, Burden
RE, McGrattan MJ, De la Vega M, Govender U, Quinn DJ, Dib K, Gadina
M, Scott CJ and Johnston JA: USP17 regulates Ras activation and
cell proliferation by blocking RCE1 activity. J Biol Chem.
284:9587–9595. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Malik NM, Gilroy DW and Kabouridis PS:
Regulation of growth and survival of activated T cells by
cell-transducing inhibitors of Ras. FEBS Lett. 583:61–69. 2009.
View Article : Google Scholar :
|
38
|
Scita G, Tenca P, Frittoli E, Tocchetti A,
Innocenti M, Giardina G and Di Fiore PP: Signaling from Ras to Rac
and beyond: not just a matter of GEFs. EMBO J. 19:2393–2398. 2000.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Contestabile A, Bonanomi D, Burgaya F,
Girault JA and Valtorta F: Localization of focal adhesion kinase
isoforms in cells of the central nervous system. Int J Dev
Neurosci. 21:83–93. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chacón MR, Fernández G and Rico B: Focal
adhesion kinase functions downstream of Sema3A signaling during
axonal remodelling. Mol Cell Neurosci. 44:30–42. 2010. View Article : Google Scholar
|
41
|
Woo S, Rowan DJ and Gomez TM: Retinotopic
mapping requires focal adhesion kinase-mediated regulation of
growth cone adhesion. J Neurosci. 29:13981–13991. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Parsons JT: Focal adhesion kinase: the
first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI
|