1
|
Jang E, Kim HR, Cho SH, Paik DJ, Kim JM,
Lee SK and Youn J: Prevention of spontaneous arthritis by
inhibiting homeostatic expansion of autoreactive CD4+ T
cells in the K/BxN mouse model. Arthritis Rheum. 54:492–498. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Stanford SM, Maestre MF, Campbell AM,
Bartok B, Kiosses WB, Boyle DL, Arnett HA, Mustelin T, Firestein GS
and Bottini N: Protein tyrosine phosphatase expression profile of
rheumatoid arthritis fibroblast-like synoviocytes: a novel role of
SH2 domain-containing phosphatase 2 as a modulator of invasion and
survival. Arthritis Rheum. 65:1171–1180. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chang SK, Gu Z and Brenner MB:
Fibroblast-like synoviocytes in inflammatory arthritis pathology:
the emerging role of cadherin-11. Immunol Rev. 233:256–266. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee HS, Ka SO, Lee SM, Lee SI, Park JW and
Park BH: Overexpression of sirtuin 6 suppresses inflammatory
responses and bone destruction in mice with collagen-induced
arthritis. Arthritis Rheum. 65:1776–1785. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Goh C, Narayanan S and Hahn YS:
Myeloid-derived suppressor cells: the dark knight or the joker in
viral infections? Immunol Rev. 255:210–221. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Young MR, Newby M and Wepsic HT:
Hematopoiesis and suppressor bone marrow cells in mice bearing
large metastatic Lewis lung carcinoma tumors. Cancer Res.
47:100–105. 1987.PubMed/NCBI
|
7
|
Monu NR and Frey AB: Myeloid-derived
suppressor cells and anti-tumor T cells: a complex relationship.
Immunol Invest. 41:595–613. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kong YY, Fuchsberger M, Xiang SD,
Apostolopoulos V and Plebanski M: Myeloid derived suppressor cells
and their role in diseases. Curr Med Chem. 20:1437–1444. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ioannou M, Alissafi T, Boon L, Boumpas D
and Verginis P: In vivo ablation of plasmacytoid dendritic cells
inhibits autoimmunity through expansion of myeloid-derived
suppressor cells. J Immunol. 190:2631–2640. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Alabanza LM, Esmon NL, Esmon CT and Bynoe
MS: Inhibition of endogenous activated protein C attenuates
experimental autoimmune encephalomyelitis by inducing
myeloid-derived suppressor cells. J Immunol. 191:3764–3777. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ioannou M, Alissafi T, Lazaridis I, Deraos
G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A,
Boumpas D and Verginis P: Crucial role of granulocytic
myeloid-derived suppressor cells in the regulation of central
nervous system autoimmune disease. J Immunol. 188:1136–1146. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Egelston C, Kurkó J, Besenyei T,
Tryniszewska B, Rauch TA, Glant TT and Mikecz K: Suppression of
dendritic cell maturation and T cell proliferation by synovial
fluid myeloid cells from mice with autoimmune arthritis. Arthritis
Rheum. 64:3179–3188. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jiao Z, Hua S, Wang W, Wang H, Gao J and
Wang X: Increased circulating myeloid-derived suppressor cells
correlated negatively with Th17 cells in patients with rheumatoid
arthritis. Scand J heumatol. 42:85–90. 2013. View Article : Google Scholar
|
14
|
Ku SK, Kim JA and Bae JS: Piperlonguminine
downregulates endothelial protein C receptor shedding in vitro and
in vivo. Inflammation. 37:435–442. 2014. View Article : Google Scholar
|
15
|
Khathi A, Masola B and Musabayane CT:
Effects of Syzygium aromaticum-derived oleanolic acid on glucose
transport and glycogen synthesis in the rat small intestine. J
Diabetes. 5:80–87. 2013. View Article : Google Scholar
|
16
|
Nakagomi D, Ikeda K, Okubo, et al:
Ultrasound can improve the accuracy of the 2010 American College of
Rheumatology/European League Against Rheumatism classification
criteria for rheumatoid arthritis to predict the requirement for
methotrexate treatment. Arthritis Rheum. 65:890–898. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Raj L, Ide T, Gurkar AU, Foley M, Schenone
M, Li X, et al: Selective killing of cancer cells by a small
molecule targeting the stress response to ROS. Nature. 475:231–234.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mauri C, Mars LT and Londei M: Therapeutic
activity of agonistic monoclonal antibodies against CD40 in a
chronic autoimmune inflammatory process. Nat Med. 6:673–679. 2000.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kotzin B and Kappler J: Targeting the T
cell receptor in rheumatoid arthritis. Arthritis Rheum.
41:1906–1910. 1998. View Article : Google Scholar : PubMed/NCBI
|
20
|
Malemud CJ and Miller AH: Pro-inflammatory
cytokine-induced SAPK/MAPK and JAK/STAT inrheumatoid arthritis and
the new anti-depression drugs. Expert Opin Ther Targets.
12:171–183. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fujii W, Ashihara E, Hirai H, Nagahara H,
Kajitani N, Fujioka K, Murakami K, Seno T, Yamamoto A, Ishino H,
Kohno M, Maekawa T and Kawahito Y: Myeloid-derived suppressor cells
play crucial roles in the regulation of mouse collagen-induced
arthritis. J Immunol. 191:1073–1081. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang L, Zhang Z, Zhang H, Wu M and Wang
Y: Myeloid-derived suppressor cells protect mouse models from
autoimmune arthritis via controlling inflammatory response.
Inflammation. 37:670–677. 2014. View Article : Google Scholar
|
23
|
Noack M and Miossec P: Th17 and regulatory
T cell balance in autoimmune and inflammatory diseases. Autoimmun
Rev. 13:668–677. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Miossec P and Kolls JK: Targeting IL-17
and TH17 cells in chronic inflammation. Nat Rev Drug Discov.
11:763–776. 2012. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Neumann E, Lefèvre S, Zimmermann B, Gay S
and Müller-Ladner U: Rheumatoid arthritis progression mediated by
activated synovial fibroblasts. Trends Mol Med. 16:458–468. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Filer A: The fibroblast as a therapeutic
target in rheumatoid arthritis. Curr Opin Pharmacol. 13:413–419.
2013. View Article : Google Scholar : PubMed/NCBI
|