1
|
Amé JC, Spenlehauer C and de Murcia G: The
PARP superfamily. Bioessays. 26:882–893. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Szántó M, Brunyánszki A, Kiss B, et al:
Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a
DNA-repair protein. Cell Mol Life Sci. 69:4079–4092. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mehrotra P, Hollenbeck A, Riley JP, et al:
Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates
T(H)2 differentiation and allergic airway disease. J Allergy Clin
Immunol. 131:521–531. 2013. View Article : Google Scholar
|
4
|
Mehrotra P, Riley JP, Patel R, et al:
PARP-14 functions as a transcriptional switch for Stat6-dependent
gene activation. J Biol Chem. 286:1767–1776. 2011. View Article : Google Scholar :
|
5
|
Levaot N, Voytyuk O, Dimitriou I, et al:
Loss of Tankyrase-mediated destruction of 3BP2 is the underlying
pathogenic mechanism of cherubism. Cell. 147:1324–1339. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Bai P and Virág L: Role of
poly(ADP-ribose) polymerases in the regulation of inflammatory
processes. FEBS Lett. 586:3771–3777. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brunyánszki A, Hegedus C, Szántó M, et al:
Genetic ablation of PARP-1 protects against oxazolone-induced
contact hypersensitivity by modulating oxidative stress. J Invest
Dermatol. 130:2629–2637. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Virág L, Szabó E, Bakondi E, et al: Nitric
oxide-peroxynitrite-poly (ADP-ribose) polymerase pathway in the
skin. Exp Dermatol. 11:189–202. 2002. View Article : Google Scholar
|
9
|
Bakondi E, Gönczi M, Szabó E, et al: Role
of intracellular calcium mobilization and cell-density-dependent
signaling in oxidative-stress-induced cytotoxicity in HaCaT
keratinocytes. J Invest Dermatol. 121:88–95. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Selle A, Ullrich O, Harnacke K and Hass R:
Retrodifferentiation and rejuvenation of senescent monocytic cells
requires PARP-1. Exp Gerontol. 42:554–562. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Aldinucci A, Gerlini G, Fossati S, et al:
A key role for poly(ADP-ribose) polymerase-1 activity during human
dendritic cell maturation. J Immunol. 179:305–312. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mocchegiani E, Muzzioli M, Giacconi R, et
al: Metallothioneins/PARP-1/IL-6 interplay on natural killer cell
activity in elderly: parallelism with nonagenarians and old
infected humans. Effect of zinc supply. Mech Ageing Dev.
124:459–468. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zerfaoui M, Errami Y, Naura AS, et al:
Poly(ADP-ribose) polymerase-1 is a determining factor in
Crm1-mediated nuclear export and retention of p65 NF-kappa B upon
TLR4 stimulation. J Immunol. 185:1894–1902. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rolli J, Rosenblatt-Velin N, Li J, et al:
Bacterial flagellin triggers cardiac innate immune responses and
acute contractile dysfunction. PLoS One. 5:e126872010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Eaves-Pyles T, Murthy K, Liaudet L, et al:
Flagellin, a novel mediator of Salmonella-induced epithelial
activation and systemic inflammation: I kappa B alpha degradation,
induction of nitric oxide synthase, induction of proinflammatory
mediators, and cardiovascular dysfunction. J Immunol.
166:1248–1260. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liaudet L, Deb A, Pacher P, et al: The
Flagellin-TLR5 axis: Therapeutic opportunities. Drug News Perspect.
15:397–409. 2002. View Article : Google Scholar
|
17
|
Liaudet L, Murthy KG, Mabley JG, et al:
Comparison of inflammation, organ damage, and oxidant stress
induced by Salmonella enterica serovar Muenchen flagellin and
serovar Enteritidis lipopolysaccharide. Infect Immun. 70:192–198.
2002. View Article : Google Scholar
|
18
|
Liaudet L, Szabó C, Evgenov OV, et al:
Flagellin from gram-negative bacteria is a potent mediator of acute
pulmonary inflammation in sepsis. Shock. 19:131–137. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Murthy KG, Deb A, Goonesekera S, Szabó C
and Salzman AL: Identification of conserved domains in Salmonella
muenchen flagellin that are essential for its ability to activate
TLR5 and to induce an inflammatory response in vitro. J Biol Chem.
279:5667–5675. 2004. View Article : Google Scholar
|
20
|
Pacher P, Beckman JS and Liaudet L: Nitric
oxide and peroxynitrite in health and disease. Physiol Rev.
87:315–424. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Grabbe S and Schwarz T: Immunoregulatory
mechanisms involved in elicitation of allergic contact
hypersensitivity. Immunol Today. 19:37–44. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Grabbe S, Steinert M, Mahnke K, et al:
Dissection of antigenic and irritative effects of epicutaneously
applied haptens in mice. Evidence that not the antigenic component
but nonspecific proinflammatory effects of haptens determine the
concentration-dependent elicitation of allergic contact dermatitis.
J Clin Invest. 98:1158–1164. 1996. View Article : Google Scholar : PubMed/NCBI
|
23
|
Olmos A, Giner RM, Recio MC, et al:
Effects of plant alkylphenols on cytokine production, tyrosine
nitration and inflammatory damage in the efferent phase of contact
hypersensitivity. Br J Pharmacol. 152:366–373. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Haskó G, Mabley JG, Németh ZH, et al:
Poly(ADP-ribose) polymerase is a regulator of chemokine production:
relevance for the pathogenesis of shock and inflammation. Mol Med.
8:283–289. 2002.PubMed/NCBI
|
25
|
Soriano F, Virág L, Jagtap P, et al:
Diabetic endothelial dysfunction: the role of poly(ADP-ribose)
polymerase activation. Nat Med. 7:108–113. 2001. View Article : Google Scholar
|
26
|
Bai P, Hegedus C, Szabó E, et al:
Poly(ADP-ribose) polymerase mediates inflammation in a mouse model
of contact hypersensitivity. J Invest Dermatol. 129:234–238. 2009.
View Article : Google Scholar
|
27
|
de Murcia JM, Niedergang C, Trucco C,
Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A,
LeMeur M, Walztinger C, Chambon P and de Murcia G: Requirement of
poly(ADP-ribose) polymerase in recovery from DNA damage in mice and
in cells. Proc Natl Acad Sci USA. 94:7303–7307. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Szklenar M, Kalkowski J, Stangl V, Lorenz
M and Rühl R: Eicosanoids and docosanoids in plasma and aorta of
healthy and atherosclerotic rabbits. J Vasc Res. 50:372–382. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Rühl R: Method to determine 4-oxo-retinoic
acids, retinoic acids and retinol in serum and cell extracts by
liquid chromatography/diode-array detection atmospheric pressure
chemical ionisation tandem mass spectrometry. Rapid Commun Mass
Spectrom. 20:2497–2504. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Szabó E, Virág L, Bakondi E, et al:
Peroxynitrite production, DNA breakage, and poly(ADP-ribose)
polymerase activation in a mouse model of oxazolone-induced contact
hypersensitivity. J Invest Dermatol. 117:74–80. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Elabdeen HR, Mustafa M, Szklenar M, et al:
Ratio of pro-resolving and pro-inflammatory lipid mediator
precursors as potential markers for aggressive periodontitis. PLoS
One. 8:e708382013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lin Y, Tang X, Zhu Y, Shu T and Han X:
Identification of PARP-1 as one of the transcription factors
binding to the repressor element in the promoter region of COX-2.
Arch Biochem Biophys. 505:123–129. 2011. View Article : Google Scholar
|
33
|
Hanhoff T, Lücke C and Spener F: Insights
into binding of fatty acids by fatty acid binding proteins. Mol
Cell Biochem. 239:45–54. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bai P and Cantó C: The role of PARP-1 and
PARP-2 enzymes in metabolic regulation and disease. Cell Metab.
16:290–295. 2012.PubMed/NCBI
|
35
|
Szántó M, Brunyánszki A, Márton J, et al:
Deletion of PARP-2 induces hepatic cholesterol accumulation and
decrease in HDL levels. Biochem Biophys Acta. 1842:594–602.
2014.
|
36
|
Tomobe YI, Morizawa K, Tsuchida M, et al:
Dietary docosahexaenoic acid suppresses inflammation and
immunoresponses in contact hypersensitivity reaction in mice.
Lipids. 35:61–69. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Abba C, Mussa PP, Vercelli A and Raviri G:
Essential fatty acids supplementation in different-stage atopic
dogs fed on a controlled diet. J Anim Physiol Anim Nutr (Berl).
89:203–207. 2005. View Article : Google Scholar
|
38
|
Rühl R, Koch C, Marosvölgyi T, et al:
Fatty acid composition of serum lipid classes in mice following
allergic sensitisation with or without dietary docosahexaenoic
acid-enriched fish oil substitution. Br J Nutr. 99:1239–1246. 2008.
View Article : Google Scholar
|
39
|
Virág L and Szabó C: The therapeutic
potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev.
54:375–429. 2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Madsen P, Rasmussen HH, Leffers H, Honoré
B and Celis JE: Molecular cloning and expression of a novel
keratinocyte protein (psoriasis-associated fatty acid-binding
protein [PA-FABP]) that is highly up-regulated in psoriatic skin
and that shares similarity to fatty acid-binding proteins. J Invest
Dermatol. 99:299–305. 1992. View Article : Google Scholar : PubMed/NCBI
|