1
|
Wang JY, Shen J, Gao Q, et al: Ischemic
postconditioning protects against global cerebral
ischemia/reperfusion-induced injury in rats. Stroke. 39:983–990.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Omura A and Okita Y: Surgical treatment of
thoracoabdominal aortic aneurysm. Kyobu Geka. 65:67–79.
2012.PubMed/NCBI
|
3
|
Xing B, Chen H, Zhang M, et al: Ischemic
postconditioning inhibits apoptosis after focal cerebral
ischemia/reperfusion injury in the rat. Stroke. 39:2362–2369. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Park ES, Gao X, Chung JM and Chung K:
Levels of mitochondrial reactive oxygen species increase in rat
neuropathic spinal dorsal horn neurons. Neurosci Lett. 391:108–111.
2006. View Article : Google Scholar
|
5
|
Varija D, Kumar KP, Reddy KP and Reddy VK:
Prolonged constriction of sciatic nerve affecting oxidative
stressors & antioxidant enzymes in rat. Indian J Med Res.
129:587–592. 2009.PubMed/NCBI
|
6
|
Ning N, Dang X, Bai C, Zhang C and Wang K:
Panax notoginsenoside produces neuroprotective effects in rat model
of acute spinal cord ischemia-reperfusion injury. J Ethnopharmacol.
139:504–512. 2012. View Article : Google Scholar
|
7
|
Oshio K, Binder DK, Yang B, Schecter S,
Verkman AS and Manley GT: Expression of aquaporin water channels in
mouse spinal cord. Neuroscience. 127:685–693. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rash JE, Yasumura T, Hudson CS, Agre P and
Nielsen S: Direct immunogold labeling of aquaporin-4 in square
arrays of astrocyte and ependymocyte plasma membranes in rat brain
and spinal cord. Proc Natl Acad Sci USA. 95:11981–11986. 1998.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Nesic O, Lee J, Ye Z, et al: Acute and
chronic changes in aquaporin 4 expression after spinal cord injury.
Neuroscience. 143:779–792. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saadoun S, Bell BA, Verkman AS and
Papadopoulos MC: Greatly improved neurological outcome after spinal
cord compression injury in AQP4-deficient mice. Brain.
131:1087–1098. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hinson SR, McKeon A and Lennon VA:
Neurological autoimmunity targeting aquaporin-4. Neuroscience.
168:1009–1018. 2010. View Article : Google Scholar
|
12
|
Nicaise C, Soyfoo MS, Authelet M, et al:
Aquaporin-4 overexpression in rat ALS model. Anat Rec (Hoboken).
292:207–213. 2009. View
Article : Google Scholar
|
13
|
Radad K, Gille G, Liu L and Rausch WD: Use
of ginseng in medicine with emphasis on neurodegenerative
disorders. J Pharmacol Sci. 100:175–186. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao J, Su C, Yang C, et al: Determination
of ginsenosides Rb1, Rb2 and Rb3 in rat plasma by a rapid and
sensitive liquid chromatography tandem mass spectrometry method:
Application in a pharmacokinetic study. J Pharm Biomed Anal.
64–65:94–97. 2012. View Article : Google Scholar
|
15
|
Wu L, Jin Y, Yin C and Bai L:
Co-transformation of Panax major ginsenosides Rb1 and
Rg1 to minor ginsenosides C-K and F1 by
Cladosporium cladosporioides. J Ind Microbiol Biotechnol.
39:521–527. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee JG, Baek SH, Lee YY, Park SY and Park
JH: Anti-complementary ginsenosides isolated from processed
ginseng. Biol Pharm Bull. 34:898–900. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwok HH, Guo GL, Lau JK, et al:
Stereoisomers ginsenosides-20(S)-Rg3 and
-20(R)-Rg3 differentially induce angiogenesis through
peroxisome proliferator-activated receptor-gamma. Biochem
Pharmacol. 83:893–902. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yuan HD, Kim do Y, Quan HY, Kim SJ, Jung
MS and Chung SH: Ginsenoside Rg2 induces orphan nuclear receptor
SHP gene expression and inactivates GSK3β via AMP-activated protein
kinase to inhibit hepatic glucose production in HepG2 cells. Chem
Biol Interact. 195:35–42. 2012. View Article : Google Scholar
|
19
|
Ha SE, Shin DH, Kim HD, et al: Effects of
ginsenoside Rg2 on the ultraviolet B-induced DNA damage responses
in HaCaT cells. Naunyn Schmiedebergs Arch Pharmacol. 382:89–101.
2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang JW, Chen XM, Chen XH and Zheng SS:
Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via
intrinsic apoptotic pathway. World J Gastroenterol. 17:3605–3613.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Poon PY, Kwok HH, Yue PY, et al:
Cytoprotective effect of 20S-Rg3 on benzo[a]pyrene-induced DNA
damage. Drug Metab Dispos. 40:120–129. 2012. View Article : Google Scholar
|
22
|
Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS
and Whang WK: The antidiabetic effect of ginsenoside Rb2 via
activation of AMPK. Arch Pharm Res. 34:1201–1208. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Quan LH, Min JW, Sathiyamoorthy S, Yang
DU, Kim YJ and Yang DC: Biotransformation of ginsenosides Re and
Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase.
Biotechnol Lett. 34:913–917. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng B, Li J, Du J, Lv X, Weng L and Ling
C: Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-κB
and MAPKs pathways. Food Chem Toxicol. 50:1610–1615. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tan S, Zhou F, Yu Z, et al: Study on
characteristics of energy metabolism in skeletal muscle of rats
with postoperative fatigue syndrome and interventional effect of
ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi. 36:3489–3493. 2011.(In
Chinese).
|
26
|
Liu DH, Chen YM, Liu Y, et al: Rb1
protects endothelial cells from hydrogen peroxide-induced cell
senescence by modulating redox status. Biol Pharm Bull.
34:1072–1077. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin ZY, Chen LM, Zhang J, et al:
Ginsenoside Rb1 selectively inhibits the activity of L-type
voltage-gated calcium channels in cultured rat hippocampal neurons.
Acta Pharmacol Sin. 33:438–444. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu J, Jiang Y, Wu L, Lu T, Xu G and Liu
X: Suppression of local inflammation contributes to the
neuroprotective effect of ginsenoside Rb1 in rats with cerebral
ischemia. Neuroscience. 202:342–351. 2012. View Article : Google Scholar
|
29
|
Xia R, Zhao B, Wu Y, et al: Ginsenoside
Rb1 preconditioning enhances eNOS expression and attenuates
myocardial ischemia/reperfusion injury in diabetic rats. J Biomed
Biotechnol. 2011:7679302011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bowes MP, Masliah E, Otero DA, Zivin JA
and Saitoh T: Reduction of neurological damage by a peptide segment
of the amyloid beta/A4 protein precursor in a rabbit spinal cord
ischemia model. Exp Neurol. 129:112–119. 1994. View Article : Google Scholar : PubMed/NCBI
|
31
|
Basso DM, Beattie MS, Bresnahan JC, et al:
MASCIS evaluation of open field locomotor scores: effects of
experience and teamwork on reliability. Multicenter Animal Spinal
Cord Injury Study. J Neurotrauma. 13:343–359. 1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Nesic O, Guest JD, Zivadinovic D, et al:
Aquaporins in spinal cord injury: the janus face of aquaporin 4.
Neuroscience. 168:1019–1035. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bloch O, Papadopoulos MC, Manley GT and
Verkman AS: Aquaporin-4 gene deletion in mice increases focal edema
associated with staphylococcal brain abscess. J Neurochem.
95:254–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li L, Zhang H, Varrin-Doyer M, Zamvil SS
and Verkman AS: Proinflammatory role of aquaporin-4 in autoimmune
neuroinflammation. FASEB J. 25:1556–1566. 2011. View Article : Google Scholar : PubMed/NCBI
|