1
|
Barbe MT, Monyer H and Bruzzone R:
Cell-cell communication beyond connexins: the pannexin channels.
Physiology (Bethesda). 21:103–114. 2006. View Article : Google Scholar
|
2
|
Panchin Y, Kelmanson I, Matz M, et al: A
ubiquitous family of putative gap junction molecules. Curr Biol.
10:R473–R474. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Suadicani SO, Iglesias R, Wang J, et al:
ATP signaling is deficient in cultured Pannexin1-null mouse
astrocytes. Glia. 60:1106–1116. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dahl G and Keane RW: Pannexin: from
discovery to bedside in 11±4 years? Brain Res. 3:150–159. 2012.
View Article : Google Scholar
|
5
|
Penuela S, Gehi R and Laird DW: The
biochemistry and function of pannexin channels. Biochim Biophys
Acta. 1828:15–22. 2013. View Article : Google Scholar
|
6
|
D’hondt C, Ponsaerts R, De Smedt H, et al:
Pannexin channels in ATP release and beyond: An unexpected
rendezvous at the endoplasmic reticulum. Cell Signal. 23:305–316.
2011. View Article : Google Scholar
|
7
|
Gulbransen BD, Bashashati M, Hirota SA, et
al: Activation of neuronal P2×7 receptor-pannexin-1 mediates death
of enteric neurons during colitis. Nat Med. 18:600–604. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Celetti SJ, Cowan KN, Penuela S, et al:
Implications of pannexin 1 and pannexin 3 for keratinocyte
differentiation. J Cell Sci. 123:1363–1372. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Orellana JA, Froger N, Ezan P, et al: ATP
and glutamate released via astroglial connexin 43 hemichannels
mediate neuronal death through activation of pannexin 1
hemichannels. J Neurochem. 118:826–840. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pinheiro AR, Paramos-de-Carvalho D, Certal
M, et al: Histamine induces ATP release from human subcutaneous
fibroblasts, via pannexin-1 hemichannels, leading to
Ca2+ mobilization and cell proliferation. J Biol Chem.
288:27571–27583. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wicki-Stordeur LE, Dzugalo AD, Swansburg
RM, et al: Pannexin 1 regulates postnatal neural stem and
progenitor cell proliferation. Neural Devel. 7:112012. View Article : Google Scholar
|
12
|
Lai CP, Bechberger JF, Thompson RJ, et al:
Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer
Res. 67:1545–1554. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Iwamoto T, Nakamura T, Doyle A, et al:
Pannexin 3 regulates intracellular ATP/cAMP levels and promotes
chondrocyte differentiation. J Biol Chem. 285:18948–18958. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Bond SR, Lau A, Penuela S, et al: Pannexin
3 is a novel target for Runx2, expressed by osteoblasts and mature
growth plate chondrocytes. J Bone Miner Res. 26:2911–2922. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Turmel P, Dufresne J, Hermo L, et al:
Characterization of pannexin1 and pannexin3 and their regulation by
androgens in the male reproductive tract of the adult rat. Mol
Reprod Dev. 78:124–138. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chekeni FB, Elliott MR, Sandilos JK, et
al: Pannexin 1 channels mediate ‘find-me’ signal release and
membrane permeability during apoptosis. Nature. 467:863–867. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tan C, Voss U, Svensson S, et al: High
glucose and free fatty acids induce beta cell apoptosis via
autocrine effects of ADP acting on the P2Y(13) receptor. Purinergic
Signal. 9:67–79. 2013. View Article : Google Scholar :
|
18
|
Santiago MF, Veliskova J, Patel NK, et al:
Targeting pannexin1 improves seizure outcome. PLoS One.
6:e251782011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Karpuk N, Burkovetskaya M, Fritz T, et al:
Neuroinflammation leads to region-dependent alterations in
astrocyte gap junction communication and hemichannel activity. J
Neurosci. 31:14–425. 2011. View Article : Google Scholar
|
20
|
Stoimenov I and Helleday T: PCNA on the
crossroad of cancer. Biochem Soc Trans. 37:605–613. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chiara AD, Pederzoli-Ribeil M, Burgel PR,
et al: Targeting cytosolic proliferating cell nuclear antigen in
neutrophil-dominated inflammation. Front Immunol. 3:3112012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Strzalka W and Ziemienowicz A:
Proliferating cell nuclear antigen (PCNA): a key factor in DNA
replication and cell cycle regulation. Ann Bot. 107:1127–1140.
2011. View Article : Google Scholar :
|
23
|
de Sousa Abreu R, Penalva LO, Marcotte EM,
et al: Global signatures of protein and mRNA expression levels. Mol
Biosyst. 5:1512–1526. 2009.PubMed/NCBI
|
24
|
Ryten M, Dunn PM, Neary JT and Burnstock
G: ATP regulates the differentiation of mammalian skeletal muscle
by activation of a P2×5 receptor on satellite cells. J Cell Biol.
158:345–355. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ryten M, Yang SY, Dunn PM, et al:
Purinoceptor expression in regenerating skeletal muscle in the mdx
mouse model of muscular dystrophy and in satellite cell cultures.
FASEB J. 18:1404–1406. 2004.PubMed/NCBI
|
26
|
Bao BA, Lai CP, Naus CC and Morgan JR:
Pannexin1 drives multicellular aggregate compaction via a signaling
cascade that remodels the actin cytoskeleton. J Biol Chem.
287:8407–8416. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
McKuen MJ, Dahl G and Fields KA: Assessing
a potential role of host Pannexin 1 during Chlamydia trachomatis
infection. PLoS One. 8:e637322013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang L, Zhu R, Huang Z, et al:
Lipopolysaccharide-induced toll-like receptor 4 signaling in cancer
cells promotes cell survival and proliferation in hepatocellular
carcinoma. Dig Dis Sci. 58:2223–2236. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen YH, Wang CC, Xiao X, et al: Multidrug
resistance-associated protein 1 decreases the concentrations of
antiepileptic drugs in cortical extracellular fluid in amygdale
kindling rats. Acta Pharmacol Sin. 34:473–479. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tietje K, Rivera-Ingraham G, Petters C, et
al: Reporter dyes demonstrate functional expression of multidrug
resistance proteins in the marine flatworm Macrostomum lignano: the
sponge-derived dye Ageladine A is not a substrate of these
transporters. Mar Drugs. 11:3951–3969. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Furugen A, Yamaguchi H, Tanaka N, et al:
Contribution of multidrug resistance-associated proteins (MRPs) to
the release of prostanoids from A549 cells. Prostaglandins Other
Lipid Mediat. 106:37–44. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu J, Huang W and He Z: Dendrimers as
carriers for siRNA delivery and gene silencing: a review.
ScientificWorldJournal. 29:6306542013.
|
33
|
Wilson RC and Doudna JA: Molecular
mechanisms of RNA interference. Annu Rev Biophys. 42:217–239. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu XW, Ding BW, Zhu CR, et al:
PU.1-silenced dendritic cells prolong allograft survival in rats
receiving intestinal transplantation. World J Gastroenterol.
19(43): 7766–7771. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kang ZH, Wang CY, Zhang WL, et al: Histone
deacetylase HDAC4 promotes gastric cancer SGC-7901 cells
progression via p21 repression. PLoS One. 9:e988942014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhou M, Zhou L, Zheng L, et al: miR-365
Promotes Cutaneous Squamous Cell Carcinoma (CSCC) through Targeting
Nuclear Factor I/B (NFIB). PLoS One. 9:e1006202014. View Article : Google Scholar : PubMed/NCBI
|