1
|
Hanisch A, Silljé HH and Nigg EA: Timely
anaphase onset requires a novel spindle and kinetochore complex
comprising Ska1 and Ska2. EMBO J. 25:5504–5515. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Welburn JP, Grishchuk EL, Backer CB,
Wilson-Kubalek EM, Yates JR III and Cheeseman IM: The human
kinetochore Ska1 complex facilitates microtubule
depolymerization-coupled motility. Dev Cell. 16:374–385. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Guimaraes GJ and Deluca JG: Connecting
with Ska, a key complex at the kinetochore-microtubule interface.
EMBO J. 28:1375–1377. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jeyaprakash AA, Santamaria A, Jayachandran
U, et al: Structural and functional organization of the Ska
complex, a key component of the kinetochore-microtubule interface.
Mol Cell. 46:274–286. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gaitanos TN, Santamaria A, Jeyaprakash AA,
Wang B, Conti E and Nigg EA: Stable kinetochore-microtubule
interactions depend on the Ska complex and its new component
Ska3/C13Orf3. EMBO J. 28:1442–1452. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Theis M, Slabicki M, Junqueira M, et al:
Comparative profiling identifies C13orf3 as a component of the Ska
complex required for mammalian cell division. EMBO J. 28:1453–1465.
2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schmidt JC, Arthanari H, Boeszoermenyi A,
et al: The kinetochore-bound Ska1 complex tracks depolymerizing
microtubules and binds to curved protofilaments. Dev Cell.
23:968–980. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang G, Kelstrup CD, Hu XW, et al: The
Ndc80 internal loop is required for recruitment of the Ska complex
to establish end-on microtubule attachment to kinetochores. J Cell
Sci. 125:3243–3253. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Daum JR, Wren JD, Daniel JJ, et al: Ska3
is required for spindle checkpoint silencing and the maintenance of
chromosome cohesion in mitosis. Curr Biol. 19:1467–1472. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang QH, Qi ST, Wang ZB, et al:
Localization and function of the Ska complex during mouse oocyte
meiotic maturation. Cell Cycle. 11:909–916. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Anton K, Baehring JM and Mayer T:
Glioblastoma multiforme: overview of current treatment and future
perspectives. Hematol Oncol Clin North Am. 26:825–853. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Pool JL: The management of recurrent
gliomas. Clin Neurosurg. 15:265–287. 1968.PubMed/NCBI
|
13
|
Yoshida T, Matsuda Y, Naito Z and Ishiwata
T: CD44 in human glioma correlates with histopathological grade and
cell migration. Pathol Int. 62:463–470. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pagano A, Honoré S, Mohan R, et al:
Epothilone B inhibits migration of glioblastoma cells by inducing
microtubule catastrophes and affecting EB1 accumulation at
microtubule plus ends. Biochem Pharmacol. 84:432–443. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Rostomily RC, Spence AM, Duong D,
McCormick K, Bland M and Berger MS: Multimodality management of
recurrent adult malignant gliomas: results of a phase II multiagent
chemotherapy study and analysis of cytoreductive surgery.
Neurosurgery. 35:378–388. 1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hou LC, Veeravagu A, Hsu AR and Tse VC:
Recurrent glioblastoma multiforme: a review of natural history and
management options. Neurosurg Focus. 20:E52006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu BL, Cheng JX, Zhang X and Zhang W:
Controversies concerning the application of brachytherapy in
central nervous system tumors. J Cancer Res Clin Oncol.
136:173–185. 2010. View Article : Google Scholar
|
18
|
Grah JJ, Katalinic D, Stern-Padovan R, et
al: Leptomeningeal and intramedullary metastases of glioblastoma
multiforme in a patient reoperated during adjuvant
radiochemotherapy. World J Surg Oncol. 11:552013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tysnes BB and Mahesparan R: Biological
mechanisms of glioma invasion and potential therapeutic targets. J
Neurooncol. 53:129–147. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kwiatkowska A and Symons M: Signaling
determinants of glioma cell invasion. Adv Exp Med Biol.
986:121–141. 2013. View Article : Google Scholar
|
21
|
Katsetos CD and Dráber P: Tubulins as
therapeutic targets in cancer: from bench to bedside. Curr Pharm
Des. 18:2778–2792. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Katsetos CD, Draber P and Kavallaris M:
Targeting βIII-tubulin in glioblastoma multiforme: from cell
biology and histopathology to cancer therapeutics. Anticancer
Agents Med Chem. 11:719–728. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Katsetos CD, Dráberová E, Legido A,
Dumontet C and Dráber P: Tubulin targets in the pathobiology and
therapy of glioblastoma multiforme. I Class III beta-tubulin. J
Cell Physiol. 221:505–513. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Katsetos CD, Dráberová E, Legido A and
Dráber P: Tubulin targets in the pathobiology and therapy of
glioblastoma multiforme. II gamma-tubulin. J Cell Physiol.
221:514–520. 2009. View Article : Google Scholar : PubMed/NCBI
|