1
|
Rodrigues AN, Abreu GR, Resende RS,
Goncalves WL and Gouvea SA: Cardiovascular risk factor
investigation: a pediatric issue. Int J Gen Med. 6:57–66. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Cesarino EJ, Vituzzo AL, Sampaio JM,
Ferreira DA, Pires HA and de Souza L: Assessment of cardiovascular
risk of patients with arterial hypertension of a public health
unit. Einstein (Sao Paulo). 10:33–38. 2012. View Article : Google Scholar
|
3
|
Pollex RL, Spence JD, House AA, et al: A
comparison of ultrasound measurements to assess carotid
atherosclerosis development in subjects with and without type 2
diabetes. Cardiovasc Ultrasound. 3:152005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Small EM and Olson EN: Pervasive roles of
microRNAs in cardiovascular biology. Nature. 469:336–342. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chang TC and Mendell JT: microRNAs in
vertebrate physiology and human disease. Annu Rev Genomics Hum
Genet. 8:215–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mendell JT and Olson EN: MicroRNAs in
stress signaling and human disease. Cell. 148:1172–1187. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
He L and Hannon GJ: MicroRNAs: small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Amelio I, Lena AM, Viticchie G, et al:
miR-24 triggers epidermal differentiation by controlling actin
adhesion and cell migration. J Cell Biol. 199:347–363. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Donners MM, Wolfs IM, Stöger LJ, et al:
Hematopoietic miR155 deficiency enhances atherosclerosis and
decreases plaque stability in hyperlipidemic mice. PLoS One.
7:e358772012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nossent AY, Hansen JL, Doggen C, Quax PH,
Sheikh SP and Rosendaal FR: SNPs in microRNA binding sites in
3′-UTRs of RAAS genes influence arterial blood pressure and risk of
myocardial infarction. Am J Hypertens. 24:999–1006. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hergenreider E, Heydt S, Tréguer K, et al:
Atheroprotective communication between endothelial cells and smooth
muscle cells through miRNAs. Nat Cell Biol. 14:249–256. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kwanhian W, Lenze D, Alles J, et al:
MicroRNA-142 is mutated in about 20% of diffuse large B-cell
lymphoma. Cancer Med. 1:141–155. 2012. View
Article : Google Scholar
|
13
|
Saito Y, Suzuki H, Tsugawa H, Imaeda H,
Matsuzaki J, Hirata K, et al: Overexpression of miR-142-5p and
miR-155 in gastric mucosa-associated lymphoid tissue (MALT)
lymphoma resistant to Helicobacter pylori eradication. PLoS One.
7:e473962012. View Article : Google Scholar : PubMed/NCBI
|
14
|
von der Thüsen JH, van Berkel TJ and
Biessen EA: Induction of rapid atherogenesis by perivascular
carotid collar placement in apolipoprotein E-deficient and
low-density lipoprotein receptor-deficient mice. Circulation.
103:1164–1170. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang XL, Zhang L, Youker K, et al: Free
fatty acids inhibit insulin signaling-stimulated endothelial nitric
oxide synthase activation through upregulating PTEN or inhibiting
Akt kinase. Diabetes. 55:2301–2310. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lagos-Quintana M, Rauhut R, Yalcin A,
Meyer J, Lendeckel W and Tuschl T: Identification of
tissue-specific microRNAs from mouse. Curr Biol. 12:735–739. 2002.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Baek D, Villén J, Shin C, Camargo FD, Gygi
SP and Bartel DP: The impact of microRNAs on protein output.
Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pasquinelli AE, Hunter S and Bracht J:
MicroRNAs: a developing story. Curr Opin Genet Dev. 15:200–205.
2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Farh KK, Grimson A, Jan C, et al: The
widespread impact of mammalian MicroRNAs on mRNA repression and
evolution. Science. 310:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nazari-Jahantigh M, Wei Y, Noels H, et al:
MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in
macrophages. J Clin Invest. 122:4190–4202. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sun X, Zhang M, Sanagawa A, et al:
Circulating microRNA-126 in patients with coronary artery disease:
correlation with LDL cholesterol. Thromb J. 10:162012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang E and Wu Y: MicroRNAs: important
modulators of oxLDL-mediated signaling in atherosclerosis. J
Atheroscler Thromb. 20:215–227. 2013. View Article : Google Scholar
|
25
|
Xie C, Huang H, Sun X, et al: MicroRNA-1
regulates smooth muscle cell differentiation by repressing
Kruppel-like factor 4. Stem Cells Dev. 20:205–210. 2011. View Article : Google Scholar :
|
26
|
Tréguer K, Heinrich EM, Ohtani K, Bonauer
A and Dimmeler S: Role of the microRNA-17-92 cluster in the
endothelial differentiation of stem cells. J Vasc Res. 49:447–460.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chan YC, Roy S, Khanna S and Sen CK:
Downregulation of endothelial microRNA-200b supports cutaneous
wound angiogenesis by desilencing GATA binding protein 2 and
vascular endothelial growth factor receptor 2. Arterioscler Thromb
Vasc Biol. 32:1372–1382. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tserel L, Runnel T, Kisand K, et al:
MicroRNA expression profiles of human blood monocyte-derived
dendritic cells and macrophages reveal miR-511 as putative positive
regulator of Toll-like receptor 4. J Biol Chem. 286:26487–26495.
2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Urbich C, Kuehbacher A and Dimmeler S:
Role of microRNAs in vascular diseases, inflammation, and
angiogenesis. Cardiovasc Res. 79:581–588. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Virtue A, Mai J, Yin Y, et al: Structural
evidence of anti-atherogenic microRNAs. Front Biosci (Landmark Ed).
16:3133–3145. 2011. View
Article : Google Scholar
|
31
|
Shan Z, Yao C, Li ZL, et al:
Differentially expressed microRNAs at different stages of
atherosclerosis in ApoE-deficient mice. Chin Med J (Engl).
126:515–520. 2013.
|
32
|
Ding S, Liang Y, Zhao M, et al: Decreased
microRNA-142-3p/5p expression causes CD4+ T cell activation and B
cell hyperstimulation in systemic lupus erythematosus. Arthritis
Rheum. 64:2953–2963. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Park S, Kang S, Min KH, et al:
Age-associated changes in microRNA expression in bone marrow
derived dendritic cells. Immunol Invest. 42:179–190. 2013.
View Article : Google Scholar
|
34
|
Gray EE and Cyster JG: Lymph node
macrophages. J Innate Immun. 4:424–436. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hutchinson JA, Riquelme P, Geissler EK and
Fändrich F: Isolation of murine macrophages. Methods Mol Biol.
6:181–192. 2011.
|
36
|
Chadban SJ, Wu H and Hughes J: Macrophages
and kidney transplantation. Semin Nephrol. 30:278–289. 2010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Seimon TA, Nadolski MJ, Liao X, et al:
Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent
apoptosis in macrophages undergoing endoplasmic reticulum stress.
Cell Metab. 12:467–482. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liao X, Sluimer JC, Wang Y, et al:
Macrophage autophagy plays a protective role in advanced
atherosclerosis. Cell Metab. 15:545–553. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tsukano H, Gotoh T, Endo M, et al: The
endoplasmic reticulum stress-C/EBP homologous protein
pathway-mediated apoptosis in macrophages contributes to the
instability of atherosclerotic plaques. Arterioscler Thromb Vasc
Biol. 30:1925–1932. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Inagaki Y, Yamagishi S, Amano S, et al:
Interferon-gamma-induced apoptosis and activation of THP-1
macrophages. Life Sci. 71:2499–2508. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jin ZG, Lungu AO, Xie L, Wang M, Wong C
and Berk BC: Cyclophilin A is a proinflammatory cytokine that
activates endothelial cells. Arterioscler Thromb Vasc Biol.
24:1186–1191. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
de Winther MP, Kanters E, Kraal G and
Hofker MH: Nuclear factor kappaB signaling in atherogenesis.
Arterioscler Thromb Vasc Biol. 25:904–914. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Beswick EJ, Pinchuk IV, Earley RB, Schmitt
DA and Reyes VE: Role of gastric epithelial cell-derived
transforming growth factor beta in reduced CD4+ T cell
proliferation and development of regulatory T cells during
Helicobacter pylori infection. Infect Immun. 79:2737–2745. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Bartram U, Molin DG, Wisse LJ, Mohamad A,
Sanford LP, Doetschman T, et al: Double-outlet right ventricle and
overriding tricuspid valve reflect disturbances of looping,
myocardialization, endocardial cushion differentiation, and
apoptosis in TGF-beta(2)-knockout mice. Circulation. 103:2745–2752.
2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Singla DK, Singla RD, Lamm S and Glass C:
TGF-β2 treat ment enhances cytoprotective factors released from
embryonic stem cells and inhibits apoptosis in infarcted
myocardium. Am J Physiol Heart Circ Physiol. 300:H1442–H1450. 2011.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Mallat Z, Gojova A, Marchiol-Fournigault
C, et al: Inhibition of transforming growth factor-beta signaling
accelerates atherosclerosis and induces an unstable plaque
phenotype in mice. Circ Res. 89:930–934. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lyons RE, Anthony JP, Ferguson DJ, et al:
Immunological studies of chronic ocular toxoplasmosis:
up-regulation of major histocompatibility complex class I and
transforming growth factor beta and a protective role for
interleukin-6. Infect Immun. 69:2589–2595. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sun CK, Chua MS, He J and So SK:
Suppression of glypican 3 inhibits growth of hepatocellular
carcinoma cells through up-regulation of TGF-beta2. Neoplasia.
13:735–747. 2011.PubMed/NCBI
|